K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

tự làm

NV
14 tháng 5 2020

Làm biếng tính, hướng dẫn cách giải:

Giả sử cạnh hình vuông có độ dài x

Dễ dàng tính được (bằng cách qua N kẻ đường thẳng song song BC cắt 2 cạnh hình vuông tại 2 điểm P; Q và sử dụng Pitago):

\(MD=\sqrt{x^2+\left(\frac{x}{2}\right)^2}=\frac{x\sqrt{5}}{2}\)

\(ND=\sqrt{\left(\frac{3x}{4}\right)^2+\left(\frac{x}{4}\right)^2}=\frac{x\sqrt{10}}{4}\)

\(NM=\sqrt{\left(\frac{3x}{4}\right)^2+\left(\frac{x}{4}\right)^2}=\frac{x\sqrt{10}}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}ND=NM\\ND^2+NM^2=MD^2\end{matrix}\right.\) \(\Rightarrow MND\) vuông cân tại N

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MN}.\overrightarrow{ND}=0\\MN=ND\end{matrix}\right.\) \(\Rightarrow\) tọa độ D

\(\left\{{}\begin{matrix}\overrightarrow{AD}.\overrightarrow{AM}=0\\AD=2AM\end{matrix}\right.\) \(\Rightarrow\) tọa độ A

Viết được pt CD song song AM và đi qua D

16 tháng 5 2020

C.ơn bn nha

Đặt AB=a

=>\(MB=MN=a\sqrt{10};BN=2a\sqrt{5}\)

=>ΔBMN vuông cân tại M và J là trung điểm của BN

=>MJ vuông góc NJ

=>NJ: x-5=0

Tọa độ J là:

x-5=0 và 2y-7=0

=>x=5 và y=7/2

Vì J là trung điểm của BN nên B(5;1)

Gọi C(x,y), x>3

BC=2NC=2 căn 5

Ta có HPT:

(x-5)^2+(y-1)^2=20 và (x-5)^2+(y-6)^2=5

=>x=7 và y=5(nhận) hoặc x=3 và y=5(loại)

=>C(7;5)

25 tháng 3 2021

Phương trình đường thẳng AM: \(ax+by-\dfrac{11}{2}a-\dfrac{1}{2}b=0\left(a^2+b^2\ne0\right)\)

Giả sử cạnh hình vuông có độ dài là \(a\)

\(AM^2=\dfrac{5}{4}a^2;AN^2=\dfrac{10}{9}a^2;MN^2=\dfrac{25}{36}a^2\)

Theo định lí cos: \(cosMAN=\dfrac{AM^2+AN^2-MN^2}{2.AM.AN}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\dfrac{\left|2a-b\right|}{\sqrt{5\left(a^2+b^2\right)}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left(a-3b\right)\left(3a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\3a=-b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}AM:3x+y-17=0\\AM:x-3y-4=0\end{matrix}\right.\)

TH1: \(AM:3x+y-17=0\Rightarrow A:\left\{{}\begin{matrix}3x+y-17=0\\2x-y-3=0\end{matrix}\right.\Rightarrow A=\left(4;5\right)\)

TH2: \(AM:x-3y-4=0\Rightarrow A:\left\{{}\begin{matrix}x-3y-4=0\\2x-y-3=0\end{matrix}\right.\Rightarrow A=\left(1;-1\right)\)