K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 9 2019

Áp dụng công thức tọa độ trọng tâm tam giác:

\(\left\{{}\begin{matrix}x_G=\frac{x_A+x_B+x_O}{3}=\frac{-2+5+0}{3}=1\\y_G=\frac{y_A+y_B+y_O}{3}=\frac{-2-4+0}{3}=-2\end{matrix}\right.\)

\(\Rightarrow G\left(1;-2\right)\)

17 tháng 5 2017

O A B x y a b -b H
a) Do AB//Ox và tam giác OAB đều nên điểm A đối xứng với điểm B qua Ox.
Suy ra: AB = 2 = 2b. Nên b = 1.
Áp dụng định lý Pi-ta-go: \(OH=\sqrt{AB^2-HA^2}=\sqrt{2^2-1^2}=\sqrt{3}\).
Suy ra: \(a=\sqrt{3}\Rightarrow x_A=\sqrt{3};y_B=-\sqrt{3}\).
Vậy \(A\left(1;\sqrt{3}\right),B\left(-1;-\sqrt{3}\right)\).

18 tháng 12 2021

\(\left\{{}\begin{matrix}x_G=\dfrac{-1+\left(-2\right)+4}{3}=\dfrac{1}{3}\\y_G=\dfrac{1+3+\left(-5\right)}{3}=-\dfrac{1}{3}\end{matrix}\right.\)

28 tháng 7 2018

Tọa độ trọng tâm G x G ; y G  là x G = 1 − 2 + 5 3 = 4 3 y G = 3 + 4 + 3 3 = 10 3 .  

Chọn D.

28 tháng 12 2020

Ta thấy A,B một điểm thì thuộc trục tung, một điểm thì thuộc trục hoành nên tam giác OAB vuông tại O

=> Tâm đường tròn ngoại tiếp là trung điểm của AB

có tọa độ (2; -1)

26 tháng 6 2018

Theo tính chất đường phân giác của tam giác ta có  E A E B = O A O B = 2 2 .

Vì E nằm giữa hai điểm A, B nên E A → = − 2 2 E B → . *  

Gọi E(x; y). Ta có  E A → = 1 − x ; 3 − y E B → = 4 − x ; 2 − y .

Từ (*), suy ra  1 − x = − 2 2 4 − x 3 − y = − 2 2 2 − y ⇔ x = − 2 + 3 2 y = 4 − 2 .

 Chọn D.

24 tháng 4 2018

Tọa độ trọng tâm G của tam gác MNP là:

x G = x M + ​ x N + ​ x P 3 = 0 + ( − 3 ) + ​ 9 3 = 2 y G = y M + ​ y N + ​ y P 3 = 4 + ​ 2 + ( − 3 ) 3 = 1 ⇒ G ​ ( 2 ; 1 )  

Đáp án D

NV
13 tháng 1 2021

Đề thiếu hết dữ liệu tọa độ các điểm rồi bạn

NV
24 tháng 12 2020

1.

\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-\dfrac{3}{2}\\y_I=\dfrac{y_A+y_B}{2}=1\end{matrix}\right.\) \(\Rightarrow I\left(-\dfrac{3}{2};1\right)\)

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=0\\y_G=\dfrac{y_A+y_B+y_C}{3}=0\end{matrix}\right.\) \(\Rightarrow G\left(0;0\right)\)

2.

\(\left\{{}\begin{matrix}\overrightarrow{CI}=\left(-\dfrac{9}{2};3\right)\\\overrightarrow{AG}=\left(-2;-3\right)\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}CI=\sqrt{\left(-\dfrac{9}{2}\right)^2+3^2}=\dfrac{3\sqrt{13}}{2}\\AG=\sqrt{\left(-2\right)^2+\left(-3\right)^2}=\sqrt{13}\end{matrix}\right.\)

NV
24 tháng 12 2020

3.

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-7;-4\right)\\\overrightarrow{DC}=\left(3-x;-2-y\right)\end{matrix}\right.\)

\(ABCD\) là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7=3-x\\-4=-2-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=10\\y=2\end{matrix}\right.\) 

\(\Rightarrow D\left(10;2\right)\)

4. Gọi \(H\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{CH}=\left(x-3;y+2\right)\\\overrightarrow{AH}=\left(x-2;y-3\right)\\\overrightarrow{BC}=\left(8;-1\right)\end{matrix}\right.\)

H là trực tâm \(\Leftrightarrow\left\{{}\begin{matrix}AH\perp BC\\CH\perp AB\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{CH}.\overrightarrow{AB}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8\left(x-2\right)-1\left(y-3\right)=0\\-7\left(x-3\right)-4\left(y+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8x-y=13\\-7x-4y=-13\end{matrix}\right.\) \(\Rightarrow H\left(\dfrac{5}{3};\dfrac{1}{3}\right)\)