K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

Chọn A

19 tháng 3 2016

a) Xét đường thẳng d qua M và d ⊥ (α).

Khi đó H chính là giao điểm của d và  (α). 

Vectơ (1 ; 1 ; 1) là vectơ pháp tuyến của (α) nên  là vectơ chỉ phương của d.

Phương trình tham số của đường thẳng d có dạng:    .

Thay tọa độ x ; y ; z của phương trình trên vào phương trình xác định (α), ta có:

3t + 6 = 0 => t = -2 => H(-1 ; 2 ; 0).

b) Gọi M'(x ; y ; z) là điểm đối xứng của M qua mặt phẳng (α), thì hình chiếu vuông góc H của M xuống (α) chính là trung điểm của MM'.

Ta có: 

 => x = -3 ;

    => y = 0 ;

    => z = -2.

Vậy M'(-3 ; 0 ;2).

c) Tính khoảng cách từ điểm M đến mặt phẳng (α) bằng 2 cách sau:

Cách 1: Áp dụng công thức ta có:

.

Cách 2: Khoảng cách từ M đến (α) chính là khoảng cách MH:

      d(M,(α) )= MH = .


 

26 tháng 12 2017

D địa trung hải

18 tháng 4 2016

a) Xét đường thẳng d qua M và d ⊥ (α).

Khi đó H chính là giao điểm của d và  (α). 

Vectơ (1 ; 1 ; 1) là vectơ pháp tuyến của (α) nên  là vectơ chỉ phương của d.

Phương trình tham số của đường thẳng d có dạng:    .

Thay tọa độ x ; y ; z của phương trình trên vào phương trình xác định (α), ta có:

3t + 6 = 0 => t = -2 => H(-1 ; 2 ; 0).

b) Gọi M'(x ; y ; z) là điểm đối xứng của M qua mặt phẳng (α), thì hình chiếu vuông góc H của M xuống (α) chính là trung điểm của MM'.

Ta có: 

 => x = -3 ;

    => y = 0 ;

    => z = -2.

Vậy M'(-3 ; 0 ;2).

c) Tính khoảng cách từ điểm M đến mặt phẳng (α) bằng 2 cách sau:

Cách 1: Áp dụng công thức ta có:

.

Cách 2: Khoảng cách từ M đến (α) chính là khoảng cách MH:

      d(M,(α) )= MH = .

4 tháng 5 2019

Chọn B

Đặt M(x;y;z). Lập hệ 3 phương trình ba ẩn x,y,z từ phương trình mặt phẳng (P) và điều kiện MA=MB, MA=MC

20 tháng 10 2019

Đáp án A

Thay tọa độ điểm A, B vào biểu thức vế trái của phương trình

Gọi A'(x';y';z') đối xứng A qua (P), K là trung điểm của AA'.

Mặt phẳng (P) có vectơ pháp tuyến  n P → = 1 ; − 2 ; − 1 . Khi đó:

MA+MB đạt giá trị nhỏ nhất khi  M ≡ I  là giao điểm của A'B và (P).

Điểm I(x;y;z) thỏa mãn

11 tháng 1 2019

Chọn C

9 tháng 9 2019

1 tháng 8 2019

Chọn D

5 tháng 3 2017

Chọn D

Đặt M(a;b;c). Điểm M thuộc mặt phẳng (P) ta được phương trình 2a-b-c+4=0. Hai phương trình còn lại từ giả thiết MA=MA, MA=3