K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

câu a : \(\left(x-2\right)^2+\left(y-3\right)^2=25\)

câu b : \(\left(x-2\right)^2+\left(y-3\right)^2=13\)

câu c : \(\left(x-2\right)^2+\left(y-3\right)^2=9\)

câu d : \(\left(x-2\right)^2+\left(y-3\right)^2=4\)

câu e : \(\left(x-2\right)^2+\left(y-3\right)^2=1\)

1: Gọi I(0,y) là tâm cần tìm

Theo đề, ta có: IA=IB

=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)

=>y^2-10y+25+9=y^2+14y+49+1

=>-10y+34=14y+50

=>-4y=16

=>y=-4

=>I(0;-4)

=>(x-0)^2+(y+4)^2=IA^2=90

2: Gọi (d1) là đường thẳng cần tìm

Vì (d1)//(d) nên (d1): 4x+3y+c=0

Theo đề, ta có: d(I;(d1))=3 căn 10

=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)

=>|c-12|=15căn 10

=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)

AB tiếp xúc (O) tại H

=>OH vuông góc AB và OH=R=1

ΔOAB vuông tại O nên 1/OH^2=1/OA^2+1/OB^2

=>1/OA^2+1/OB^2=1

\(\dfrac{1}{OA^2}+\dfrac{1}{OB^2}>=\dfrac{2}{OA\cdot OB}\)

=>OA*OB>=2

=>\(S_{OAB}>=1\)

Dấu = xảy ra khi OA=OB=căn 2

I(x,y) có tung độ dương nên y>0 và thuộc (d)

nên I(x;-3x-4)

y>0

=>-3x-4>0

=>-3x>4

=>x<-4/3

Theo đề, ta có: d(I;Ox)=d(I;Oy)=R

(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|

=>3x+4=x hoặc -3x-4=x

=>2x=-4 hoặc -4x=4

=>x=-2(nhận) hoặc x=-1(loại)

=>I(-2;2)

R=|2|=2

=>(C): (x+2)^2+(y-2)^2=4

=>B

I(x,y) có tung độ dương nên y>0 và thuộc (d)

nên I(x;-3x-4)

y>0

=>-3x-4>0

=>-3x>4

=>x<-4/3

Theo đề, ta có: d(I;Ox)=d(I;Oy)=R

(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|

=>3x+4=x hoặc -3x-4=x

=>2x=-4 hoặc -4x=4

=>x=-2(nhận) hoặc x=-1(loại)

=>I(-2;2)

R=|2|=2

=>(C): (x+2)^2+(y-2)^2=4

=>B

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

31 tháng 1 2022

Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)

 \(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)

Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)