K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

de ***** tu lam dihihi

17 tháng 1 2019

Đáp án : C

5 tháng 4 2016

Gọi \(I=AM\cap BN\)\(\Delta BIM\) đồng dạng  \(\Delta ABM\)

suy ra \(AM\perp BN\)  nên \(BN:-2x-y+c=0\) 

\(N\left(0;-2\right)\Rightarrow c=-2\Rightarrow BN:2x-y-2=0\)

Tọa độ điểm I là nghiệm hệ phương trình :

\(\begin{cases}x+2y-2=0\\2x-y-2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}\) \(\Rightarrow I\left(\frac{6}{5};\frac{2}{5}\right)\)

Từ \(\Delta ABM\) vuông : \(BI=\frac{AB.BM}{\sqrt{AB^2+BM^2}}=\frac{4}{\sqrt{5}}\)

Tọa độ điểm \(B\left(x;y\right)\) thỏa mãn \(\begin{cases}B\in BN\\BI=\frac{4}{\sqrt{5}}\end{cases}\) \(\Rightarrow\begin{cases}2x-y-2=0\\\left(\frac{6}{5}-x\right)^2+\left(\frac{2}{5}-y\right)^2=\frac{16}{5}\end{cases}\)

Giải hệ ta được \(\begin{cases}x=2\\y=2\end{cases}\) và \(\begin{cases}x=\frac{2}{5}\\y=\frac{-6}{5}\end{cases}\) Suy ra \(B\left(2;2\right)\)    Loại \(\left(\frac{2}{5};-\frac{6}{5}\right)\)

Tọa đọ M(x;y) thỏa mãn \(\begin{cases}M\in AM\\IM=\sqrt{BM^2-BI^2}\end{cases}\)  \(\Rightarrow\begin{cases}x+2y-2=0\\\left(x-\frac{6}{5}\right)^2+\left(y-\frac{2}{5}\right)^2=\frac{4}{5}\end{cases}\)

Giải hệ ta được : \(\begin{cases}x=2\\y=0\end{cases}\) và \(\begin{cases}x=\frac{2}{5}\\y=\frac{4}{5}\end{cases}\) suy ra \(M_1\left(2;0\right);M_2\left(\frac{2}{5};\frac{4}{5}\right)\)

8 tháng 4 2016

câu b

 

29 tháng 9 2017

5 tháng 12 2017

9 tháng 5 2017

14 tháng 8 2018

Đáp án D

Ta có d đi qua N(2;5;2) chỉ phương  u d → = ( 1 ; 2 ; 1 )  đi qua N'(2;1;2) chỉ phương   u d ' → = ( 1 ; - 2 ; 1 )

Gọi (R) là mặt phẳng chứa A và d, gọi (Q) là mặt phẳng chứa A¢ và d¢

Từ giả thiết ta nhận thấy điểm M nằm trong các mặt phẳng (R), (Q) nên đường thẳng cố định chứa M chính là giao tuyến của các mặt phẳng (R), (Q).

Vậy (R) đi qua N(2;5;2) có cặp chỉ phương là  u d → = ( 1 ; 2 ; 1 ) , u → = ( 15 ; - 10 ; - 1 )

(R) đi qua  A(a;0;0) => a=2

Tương tự (Q) đi qua N'(2;1;2) có cặp chỉ phương  u d → = ( 1 ; 2 ; 1 ) ,  u → = ( 15 ; - 10 ; - 1 )

(Q) đi qua  B(0;0;b) => b=4

Vậy T = a+b=6