K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

24 tháng 5 2017

(C) có tâm \(I\left(-1;2\right)\), bán kính \(R=4\), (C') có tâm \(I'\left(10;-5\right)\), bán kính \(R'=4\). Vậy \(\left(C'\right)=T_{\overrightarrow{v}}\left(C\right),\overrightarrow{v}=\overrightarrow{II}=\left(11;-7\right)\)

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

Phép dời hình và phép đồng dạng trong mặt phẳng

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

11 tháng 9 2021

Biểu thức tọa độ của phép tịnh tiến \(T_{\vec{a}}\):

\(\left\{{}\begin{matrix}x'=x+2\\y'=y-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'+1\end{matrix}\right.\)

Vì \(M\left(x;y\right)\in C\)\(\left(x-1\right)^2+\left(y+5\right)^2=8\)

\(\Leftrightarrow\left(x'-3\right)^2+\left(y'+6\right)^2=8\)

\(\Leftrightarrow M'\left(x';y'\right)\in\left(C'\right):\left(x-3\right)^2+\left(y+6\right)^2=8\)

Vậy ảnh của \(\left(C\right)\) là \(\left(x-3\right)^2+\left(y+6\right)^2=8\)

31 tháng 3 2017

Gọi I' là ảnh của I qua phép biến hình nói trên

a) Phương trình của đường tròn (I;3) là ((x-3)^{2} + (y+2)^{2} = 9

b) (I) = I' (1;-1), phương trình đường tròn ảnh : (x-1)^{2} + (y+1)^{2} = 9

c) {D_{Ox}}^{} (I) = I'(3;2), phương trình đường tròn ảnh: (x-3)^{2} + (y-2)^{2} = 9

d) {D_{O}}^{}(I) = I'( -3;2), phương trình đường tròn ảnh: (x+3)^{2} + (y-2)^{2} = 9

31 tháng 3 2017

Gọi I' là ảnh của I qua phép biến hình nói trên

a) Phương trình của đường tròn (I;3) là ((x-3)^{2} + (y+2)^{2} = 9

b) (I) = I' (1;-1), phương trình đường tròn ảnh : (x-1)^{2} + (y+1)^{2} = 9

c) {D_{Ox}}^{} (I) = I'(3;2), phương trình đường tròn ảnh: (x-3)^{2} + (y-2)^{2} = 9

d) {D_{O}}^{}(I) = I'( -3;2), phương trình đường tròn ảnh: (x+3)^{2} + (y-2)^{2} = 9

9 tháng 8 2021

Ta thấy tâm vị tự \(I\left(1;-1\right)\) cũng là tâm của đường tròn \(\left(C\right)\). Do đó \(\left(C'\right),\left(C\right)\) đồng tâm

Suy ra tỉ số vị tự \(k=\frac{R'}{R}=\frac{IM}{R}=\frac{5}{4}\) thì \(\left(C'\right)\) đi qua M.