K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2020

Ta sẽ áp dụng công thức sau:

Cho 2 điểm A(x;y) và B(t;z) khi đó \(AB=\sqrt{\left(x-t\right)^2+\left(y-z\right)^2}\)

Khi đó ta dễ dàng tính được:

\(AB=\sqrt{\left(\frac{1}{2}-2\right)^2+\left(\frac{3}{2}-3\right)^2}=\frac{3\sqrt{2}}{2}\)

\(BC=\sqrt{\left(2-1\right)^2+\left(3-1\right)^2}=\sqrt{5}\)

\(CA=\sqrt{\left(\frac{1}{2}-1\right)^2+\left(\frac{3}{2}-1\right)^2}=\frac{\sqrt{2}}{2}\)

Mà \(AB^2+CA^2=\left(\frac{3\sqrt{2}}{2}\right)^2+\left(\frac{\sqrt{2}}{2}\right)^2=5=BC^2\)

=> Tam giác ABC vuông tại A

=> \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{\frac{3\sqrt{2}}{2}\cdot\frac{\sqrt{2}}{2}}{2}=\frac{3}{4}\left(dvdt\right)\)

16 tháng 11 2017

có ai biết cách làm thì giúp mk với mai mk cần lắm rồi

7 tháng 11 2021

b, \(AB=\sqrt{\left(2+2\right)^2+\left(3-0\right)^2}=5\)

\(BC=\sqrt{\left(-2-4\right)^2+\left(0-3\right)^2}=3\sqrt{5}\\ AC=\sqrt{\left(2-4\right)^2+\left(3-3\right)^2}=2\)

Do đó \(P_{ABC}=AB+BC+CA=7+3\sqrt{5}\left(đvd\right)\)

14 tháng 11 2015

Áp dụng: \(A\left(x_A;y_A\right);\text{ }B\left(x_B;y_B\right)\Rightarrow AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\)

Để chứng minh tam giác vuông thì dùng định lý pytago