K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2023

Để 2 học sinh nam ko ngồi đối diện và ngồi cạnh nhau nên ta có 2 lựa chọn
     Lựa chọn 1 : 7 bạn nam ngồi lần lượt vào các vị trí ghế 1,3,5,7,9 vá các bạn nữ ngồi 2,4,6,8,10,12,14
 Khi đó: ghế số 1 có 7 lựa chon
              ghế số 2 có 6 lựa chọn
              ghế số 3 có 5 lựa chon
               ghế số 4 có 4 lựa chon
               ghế số 5 có 3  lựa chon
                ghế số 6 có 2 lựa chon
               ghế số 7 có 1 lựa chon
 => có 7x6x5x4x3x2x1 = 5040 cách xếp các bạn nam 
   Tương tự cũng sẽ có   5040 cách xếp các bạn nữ

   Lựa chọn 2: Các bạn nam ngồi vào các ghế số 2,4,6,8,10,12,14
  =>  Tương tự ta cũng có 5040 cách xếp các bạn nam
      và 5040 cách xếp các bạn nữ 
 
 Vậy qua 2 lựa chọn ta có 5040x4= 20160 cách xếp 

a: SỐ cách xếp là;

5!*6!*2=172800(cách)

b: Số cách xếp là \(6!\cdot5!=86400\left(cách\right)\)

 

NV
21 tháng 4 2023

Không gian mẫu: \(12!\)

Xếp 8 nam: có \(8!\) cách

8 nam tạo thành 9 khe trống, xếp 4 nữ vào 9 khe trống này: \(A_9^4\) cách

\(\Rightarrow8!.A_9^4\) cách

Xác suất: \(P=\dfrac{8!.A_9^4}{12!}=\)

NV
21 tháng 4 2023

Câu này có thể coi như không giải theo cách gián tiếp được (thực ra là có giải được nhưng ko ai giải kiểu đó hết), nó bao gồm các trường hợp 4 nữ cạnh nhau, 3 nữ cạnh nhau, 2 nữ cạnh nhau, trong đó trường hợp trước còn bao hàm trường hợp sau cần loại trừ nữa