Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(x\)là số học sinh cả 3 mốn Toán , Văn , Ngoại ngữ \(\left(x>0\right)\)
Ta có :
Số học sinh chỉ giỏi Toán là :
\(70-49-\left(32-x\right)\)
Số học sinh chỉ giỏi Văn là :
\(65-49-\left(34-x\right)\)
Số học sinh chỉ giỏi ngoại ngữ là :
\(62-34-\left(32-x\right)\)
Do có 6 học sinh không đạt yêu cầu 3 môn nên :
\(111-6=70-49-\left(32-x\right)+65-49-\left(34-x\right)+62-34-\left(32-x\right)+\left(34-x\right)\)
\(\Rightarrow82+x=105\Rightarrow x=23\)
Gọi số h/s thi dỗ là x (h/s)(đk x > 64)
Số h/s thi trượt là : x -64 (h/s)
Tổng số h/s thi trượt và hỏng là x +x -64 = 2x - 64 (h/s)
THeo bài ra ta có pt:
\(\frac{x}{2x-64}=\frac{5}{9}\Rightarrow9x=5\left(2x-64\right)\Leftrightarrow9x=10x-320\Rightarrow x=320\)( tm )
VẬy có 320 h/s thi đỗ
Gọi số học sih thi đỗ và hỏng lần lượt là a và b học sinh(a ,b là STN lớn hơn 0)
Ta có:a-b=64=>a=64+b(1)
a=5/9(a+b)
Từ 1 =>64+b=5/9(b+64+b)
=>9(64+b)=5(2b+64)
<=>576+9b=10b+320
<=>10b-9b=576-320
<=>b=256(học sinh)=>số học sinh thi hỏng là 256 học sinh
Số học sinh thi đỗ là:256+64=320(học sinh)
Gọi số học sinh dự tuyển của trường là (học sinh) ()
Số học sinh dự tuyển của trường là (học sinh) ()
Vì tổng số học sinh dự thi của hai trường là 750 học sinh nên ta có phương trình: (1)
Số học sinh trúng tuyển của trường là: (học sinh)
Số học sinh trúng tuyển của trường là: (học sinh)
Vì tổng số học sinh trúng tuyển của cả hai trường là học sinh nên ta có phương trình
(2)
Từ (1) và (2) ta có hệ phương trình
Vậy số học sinh dự thi của trường là học sinh
Số học sinh dự thi của trường là học sinh.
1) Gọi x(km/h) là vận tốc của xe 1 ( x > 10 )
Vận tốc của xe 2 = x - 10 (km/h)
Thời gian xe 1 đi hết quãng đường AB = 160/x (km)
Thời gian xe 2 đi hết quãng đường AB = 160/(x-10) (km)
Khi đó xe 1 đến B sớm hơn xe 2 là 48 phút = 4/5 giờ nên ta có phương trình :
\(\frac{160}{x-10}-\frac{160}{x}=\frac{4}{5}\)
<=> \(\frac{160x}{x\left(x-10\right)}-\frac{160\left(x-10\right)}{x\left(x-10\right)}=\frac{4}{5}\)
=> 4x( x - 10 ) = 8000
<=> x2 - 10x - 2000 = 0 (*)
Xét (*) có Δ = b2 - 4ac = (-10)2 - 4.1.(-2000) = 100 + 8000 = 8100
Δ > 0 nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{10+\sqrt{8100}}{2}=50\left(tm\right)\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{10-\sqrt{8100}}{2}=-40\left(ktm\right)\end{cases}}\)
Vậy vận tốc của xe 2 là 40km/h
gọi vận tốc của xe thứ hai là x (km/h)
⇒t/g xe thứ hai đi là \(\dfrac{160}{x}\)(h)
vận tốc của xe thứ nhất là x+10 (km/h) (x>0)
⇒t/g của xe thứ nhất đi là \(\dfrac{160}{x+10}\left(h\right)\)
vì xe thứ nhất đến sớm hơn xe thứ hai là 48'=\(\dfrac{4}{5}h\) nên ta có pt:
\(\dfrac{160}{x}-\dfrac{160}{x+10}=\dfrac{4}{5}\)
⇔\(\dfrac{800x+8000-800x}{5x\left(x+10\right)}=\dfrac{4x^2+40x}{5x\left(x+10\right)}\)⇒4x\(^2\)+40x-8000=0
Δ=40\(^2\)-4.4.(-8000)=129600>0
⇒pt có hai nghiệm pb
x\(_{_{ }1}\)=\(\dfrac{-40+\sqrt{129600}}{8}\)=40 (TM)
x\(_2\)=\(\dfrac{-40-\sqrt{129600}}{8}\)=-50 (KTM)
vậy vận tốc của xe thứ hai là 40 km/h
Với 5 số tự nhiên đôi một khác nhau tùy ý thì có hai trường hợp xảy ra:
+ TH1: Có ít nhất 3 số chia cho 3 có số dư giống nhau =>Tổng ba số tương ứng chia hết cho 3.
+ TH2: Có nhiều nhất 2 số chia cho 3 có số dư giống nhau => Có ít nhất 1 số chia hết cho 3 , 1 số chia cho 3 dư 1, 1 số chia cho 3 dư 2
=> Luôn chọn được 3 số có tổng chia
hết cho 3.
Do đó ta chia 17 số là số báo danh của 17 học sinh thành 3 tập có lần lượt 5, 5, 7 phần tử.
Trong mỗi tập, chọn được 3 số có tổng lần lượt là \(3a_1,3a_2,3a_3\) (\(a_1,a_2,a_3\) ∈ N)
Còn lại 17 - 9 = 8 số, trong 8 số còn lại, chọn tiếp 3 số có tổng là \(3a_4\)
Còn lại 5 số chọn tiếp 3 số có tổng là \(3a_5\)
Trong 5 số \(a_1,a_2,a_3,a_4,a_5\) có 3 số \(a_1,a_2,a_3\) có tổng chia hết cho 3 .
Nên 9 học sinh tương ứng có tổng các số báo danh là \(3\left(a_1+a_2+a_3\right)⋮9\)
bài này dùng dirichlet được không bạn