K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017


Tứ diện OABC có OA, OB, OC đôi một vuông góc.

Gọi M, N lần lượt là trung điểm của AB và OC

Ta có 

Qua M dựng đường thẳng song song với OC, qua N dựng đường thẳng song song với OM. Hai đường thẳng này cắt nhau tại I.

 

∆ O A B  vuông tại O ⇒ M  là tâm đường tròn ngoại tiếp  I ∈   I N ⇒ I O = I C ⇒ I O = I A = I B = I C ⇒ I là tâm mặt cầu ngoại tiếp O.ABC.

 

Ta có:

 

Chọn D.

 

23 tháng 4 2017

19 tháng 8 2019

(3/2;-3/2;3/2)

Đáp án A

1 tháng 4 2019

Phương pháp:

Gọi tọa độ các điểm A, B, C.

Lập phương trình mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz bằng phương trình đoạn chắn.

Từ đó tìm được các điểm A, B, C. Từ đó tính được bán kính mặt cầu ngoại tiếp tứ diện OABC.

20 tháng 11 2019

 Gọi I(a;b;c) là tâm mặt cầu ngoại tiếp tứ diện OABC

Ta có 

Bán kính mặt cầu ngoại tiếp tứ diện OABC là 

Chọn B.

17 tháng 3 2018

16 tháng 3 2019

1 tháng 11 2019

Chọn C.

27 tháng 10 2017

Đáp án D.

Gọi D, K lần lượt là trung điểm của AB, OC. Từ D kẻ đường  thẳng vuông góc với mặt phẳng (OAB). Và cắt mặt phẳng trung trực của OC tại I ⇒ I  là tâm mặt cầu ngoại tiếp tứ diện OABC suy ra z 1 = c 2 . 

Ta có S ∆ O A D = 1 2 . S ∆ O A B = 1 4 . a b = 1 2 . D E . O A ⇒ D E = b 2 . 

Tương tự D F = a 2 ⇒ x 1 = a 2 , y = b 2 ⇒ I a 2 ; b 2 ; c 2 . 

Suy ra x 1 + y 1 + z 1 = a + b + c 2 = 1 ⇒ I ∈ P : x + y + z - 1 = 0 . 

Vậy khoảng cách từ điểm M dến (P) bằng d = 2015 3 .