Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Mặt cầu (S) tâm I(2;-1;-2) và bán kính R =2. Để mặt phẳng (P) và mặt cầu (S) có đúng 1 điểm chung thì
Chọn D
Gọi vectơ pháp tuyến của mặt phẳng (P) là , a²+b²+c²>0.
Phương trình mặt phẳng (P): a(x-4)+b (y-3)+c (z-4)=0.
Do (P) // Δ nên -3a+2b+2c=0 => 3a = 2 (b + c)
Mặt phẳng (P) tiếp xúc với (S) nên
Thay 3a=2 (c+b ) vào (*) ta được:
TH1: 2b-c=0, chọn b=1; c=2 => a = 2 => (P): 2x+y+2z-19=0 (thỏa).
TH2: b-2c=0, chọn c=1; b=2 => a = 2 => (P): 2x+2y+z-18=0 (loại do Δ ⊂ (P))
Đáp án D
Phương pháp: AB lớn nhất
Cách giải: Mặt cầu (S) có tâm I(0;-2;0) và bán kính R = 5
Ta có
Để AB lớn nhất
Chọn C
Mặt cầu (S) có tâm I(1;2;3), bán kính R =2. Mặt phẳng (ITT') cắt d tại điểm M (như hình vẽ trên). Gọi H là giao điểm của TT' và MI.
Do TT' = 2TH nên
Nhận xét rằng với
nên khi thay đổi ta luôn có
cố định. Vì thế
Từ đó ta có:
Ta kiểm tra điều kiện đủ của bài toán, tức là chứng minh rằng hình chiếu vuông góc của I lên (P) thuộc vào đường thẳng d.
Gọi d' là đường thẳng qua I và vuông góc với ta có:
Gọi M là hình chiếu vuông góc của I lên (P) ta có:
Xét hệ
Vậy với m = 1 5 thì độ dài của TT' nhỏ nhất.
Chọn D