K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

14 tháng 8 2018

Đáp án D

Ta có d đi qua N(2;5;2) chỉ phương  u d → = ( 1 ; 2 ; 1 )  đi qua N'(2;1;2) chỉ phương   u d ' → = ( 1 ; - 2 ; 1 )

Gọi (R) là mặt phẳng chứa A và d, gọi (Q) là mặt phẳng chứa A¢ và d¢

Từ giả thiết ta nhận thấy điểm M nằm trong các mặt phẳng (R), (Q) nên đường thẳng cố định chứa M chính là giao tuyến của các mặt phẳng (R), (Q).

Vậy (R) đi qua N(2;5;2) có cặp chỉ phương là  u d → = ( 1 ; 2 ; 1 ) , u → = ( 15 ; - 10 ; - 1 )

(R) đi qua  A(a;0;0) => a=2

Tương tự (Q) đi qua N'(2;1;2) có cặp chỉ phương  u d → = ( 1 ; 2 ; 1 ) ,  u → = ( 15 ; - 10 ; - 1 )

(Q) đi qua  B(0;0;b) => b=4

Vậy T = a+b=6

18 tháng 6 2019

Chọn A.

Gọi ∆ là đường thẳng cần tìm

Đường thẳng d có vecto chỉ phương  a d → = 0 ; 1 ; 1

Ta có A(2;3;3); B(2;2;2)

∆ đi qua điểm A(2;3;3) và có vectơ chỉ phương 

Vậy phương trình của ∆ là

14 tháng 8 2019

Chọn A.

Ta có A(2;3;3); B(2;2;2)

Δ đi qua điểm A(2;3;3) và có vectơ chỉ phương  A B → = 0 ; - 1 ; 1

Vậy phương trình của ∆ là x = 2 y = 3 - t z = 3 - t

28 tháng 11 2018
4 tháng 6 2019

Đáp án C

Gọi C là trung điểm của AB ⇒ C(0;1;-1) ⇒ phương trình đường thẳng qua C và song song với AB là:  x 1 = y - 1 - 1 = z + 1 2

19 tháng 5 2018

Đáp án D

HD: Để AB nhỏ nhất <=> AB là đoạn vuông góc chung của  d, d'

Gọi  A ∈ d  => A(1+a;2-a;a) và B ∈ d => B(2b,1+b;2+b)  ⇒   A B → = ( 2 b - a - 1 ; a + b - 1 ; b - a + 2 )

Vì  A B ⊥ d A B ⊥ d ' ⇒ A B → . u d → A B → . u d ' → ⇔ 2 b - a - 1 - a - b + 1 + b - a + 2 = 0 2 ( 2 b - a - 1 ) + a + b - 1 + b - a + 2 = 0

⇔ - 3 a + 2 b + 2 = 0 - 2 a + 6 b - 1 = 0 ⇔ a = 1 b = 1 2

Vậy A(2;1;1),  B 1 ; 3 2 ; 5 2   ⇒ A B →   =   - 1 ; 1 2 ; 3 2 = - 1 2 2 ; - 1 ; - 3

⇒ ( A B ) :   x - 2 - 2 = y - 1 1 = z - 1 3

6 tháng 5 2020

à xl bạn ngheennn

\n\n

\n
NV
6 tháng 5 2020

Câu 28:

\(\overrightarrow{CB}=\left(1;-1;1\right)\)

Do (P) vuông góc BC nên nhận (1;-1;1) là 1 vtpt

Phương trình (P):

\(1\left(x-1\right)-1\left(y-1\right)+1\left(z+5\right)=0\)

\(\Leftrightarrow x-y+z+5=0\)

Câu 29:

Mạt phẳng (Q) nhận \(\left(1;-2;3\right)\) là 1 vtpt nên nhận các vecto có dạng \(\left(k;-2k;3k\right)\) cũng là các vtpt với \(k\ne0\)

Do đó đáp án B đúng (ko tồn tại k thỏa mãn)

Với đáp án A thì \(k=-2\) , đáp án C thì \(k=3\), đáp án D có \(k=1\)

12 tháng 8 2017