Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{CD}=\left(1;1;1\right)\)
\(\left[\overrightarrow{AB};\overrightarrow{CD}\right]=\left(-1;2;-1\right)=-\left(1;-2;1\right)\)
Phương trình (P):
\(1\left(x-1\right)-2y+1\left(z-1\right)=0\Leftrightarrow x-2y+z-2=0\)
Để tìm phương trình mặt phẳng (P) ta cần tìm được vector pháp tuyến của mặt phẳng. Vì mặt phẳng (P) song song với đường thẳng AB nên vector pháp tuyến của (P) cũng vuông góc với vector chỉ phương của AB, tức là AB(1-0;2-0;4-1)=(1;2;3).
Vì (P) đi qua C(1;0;1) nên ta dễ dàng tìm được phương trình của (P) bằng cách sử dụng công thức phương trình mặt phẳng:
3x - 2y - z + d = 0, trong đó d là vế tự do.
Để tìm d, ta chỉ cần thay vào phương trình trên cặp tọa độ (x;y;z) của điểm C(1;0;1):
3(1) -2(0) - (1) + d = 0
⇒ d = -2
Vậy phương trình của mặt phẳng (P) là:
3x - 2y - z - 2 = 0,
và đáp án là B.
Chọn A
Gọi I là tâm mặt cầu (S). Khi đó I (t; 1+t; 2+t) và ta có:
Vậy mặt cầu (S) có tâm I (1;2;3) và bán kính
Do đó mặt cầu (S) có phương trình:
Đáp án A.
Ta có :
Do đường thẳng ∆ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d tại B(1;1;1)
Mặt khác:
Chọn D.
Vì M thuộc ∆ nên tọa độ M(-2+t;2 t;-t)
Mà điểm M thuộc mp (P) thay tọa độ điểm M vào phương trình mp(P) ta được:
-2 + t + 2(2 + t) - 3.(-t) + 4 = 0
⇔ 6t + 6 = 0 ⇔ t = -1 ⇒ M(-3;1;1)
Mặt phẳng (P) có vectơ pháp tuyến
Đường thẳng ∆ có vectơ chỉ phương
Có
Đường thẳng d đi qua điểm M(-3;1;1) và có vectơ chỉ phương là a d → .
Vậy phương trình tham số của d là x = - 3 + t y = 1 - 2 t z = 1 - t
Chọn A
Vectơ pháp tuyến của mặt phẳng (P) là . Vectơ chỉ phương của đường thẳng d là . Phương trình tham số của đường thẳng
+ giao điểm của d và (P) :
Xét phương trình: -1 + 2t + 2t – 2 + 3t - 4 = 0 ó 7t – 7 = 0 ó t = 1. Suy ra giao điểm của đường thẳng d và mặt phẳng (P) là A (1;1;1)
Ta có: A ∈ Δ. Vectơ chỉ phương của đường thẳng Δ là:
Đáp án B
1 2 A B → =(1;2;-1) là vectơ pháp tuyến của mặt phẳng trung trực của AB. I(2;1;0) là trung điểm của AB, khi đó phương trình mặt phẳng trung trực của đoạn AB là x-2+2(y-1)-z=0
<=> x+2y-z-4=0