Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi pt mặt phẳng cần tìm là: x a + y b + z c = 1 M ( 1 ; 1 ; 2 ) ∈ ( P ) ⇒ 1 a + 1 b + 2 c = 1 ( * ) A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) : O A = O B = O C ⇒ a = b = c = α > 0 ⇒ ( a ; b ; c ) ∈ { ( α ; α ; α ) , ( − α ; α ; α ) , ( α ; − α ; α ) , ( α ; α ; − α ) , ( − α ; − α ; α ) , ( − α ; α ; − α ) , ( α ; − α ; − α ) , ( − α ; − α ; − α ) }
Thay vào (*) ta thấy chỉ có 3 bộ thỏa mãn: ( α ; α ; α ) , ( − α ; α ; α ) , ( α ; − α ; α ) tương ứng có 3 mặt phẳng thỏa mãn đề bài
Đáp án D
Phương pháp :
Gọi (Q): x + y + z + a = 0 (a≠3) là mặt phẳng song song với mặt phẳng (P).
Sử dụng công thức tính khoảng cách từ 1 điểm đến một mặt phẳng.
Cách giải :
Gọi (Q): x + y + z + a = 0 (a≠3) là mặt phẳng song song với mặt phẳng (P).
Với
Vậy không có mặt phẳng (Q) nào thỏa mãn điều kiện bài toán
Đáp án B
Vì OA, OB, OC đôi một vuông góc và M là trực tâm Δ A B C ⇒ O M ⊥ A B C
Suy ra mp A B C nhận O M → làm véc tơ pháp tuyến và đi qua điểm M(1;2;3)
Vậy phương trình m p P : 1. x − 1 + 2. y − 2 + 3. z − 3 = 0 ⇔ x + 2 y + 3 z − 14 = 0
Đáp án A.
Ta có A M ⊥ B C ⊥ O A ⇒ B C ⊥ O A M ⇒ B C ⊥ O M
Tương tự ta cũng có O M ⊥ A C ⇒ O M ⊥ P ⇒ P (P) nhận O M ¯ = 3 ; 2 ; 1 là vecto pháp tuyến.
Trong các đáp án, chọn đáp án mặt phẳng có vecto pháp tuyến có cùng giá với O M ¯ và không chứa điểm M thì thỏa.