K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

Chọn A

- Giả sử G là trọng tâm tam giác ABC  suy ra  G(1;2;1)

- Lấy D(-2;-1;3) ta có  C A → = 3 D C →    

- Khi đó ta có

- Vậy S nhỏ nhất khi M là giao điểm của DG với mặt phẳng Oxz Viết phương trình DG và tìm giao điểm ta được   M ( - 1 ; 0 ; 7 3 )

 

12 tháng 10 2018

Gọi I(x;y;z) là điểm thỏa mãn 3 I A ⇀ - 2 I B ⇀ = 0 → ⇔ 3 I A ⇀ = 2 I B ⇀

Ta có 

Khi đó  3 I A ⇀ = 2 I B ⇀

Ta có:

 (vì 3 I A ⇀ - 2 I B ⇀ = 0 ⇀ )

Khi đó | 3 M A ⇀ - 2 M B ⇀ | = | M I ⇀ | = M I  nhỏ nhất khi M là hình chiếu của I trên mặt phẳng (P)

Phương trình đường thẳng d qua I(-3;-2;8) và vuông góc với (P) 

Suy ra M = d ∩ ( P )  nên tọa độ điểm M là nghiệm của hệ

Từ đó 

⇒ S = 9 a + 3 b + 6 c = - 33 - 8 + 44 = 3

Chọn đáp án B.

27 tháng 6 2019

Đáp án là A

4 tháng 5 2019

Chọn B

Đặt M(x;y;z). Lập hệ 3 phương trình ba ẩn x,y,z từ phương trình mặt phẳng (P) và điều kiện MA=MB, MA=MC

19 tháng 9 2019

Đáp án C.

Gọi I x ; y ; z  thỏa mãn

I A → + 2 I B → + 5 I C → = 0 ⇒ x = 3 + 2. ( − 3 ) + 5. ( − 1 ) 8 = − 1 y = − 1 + 2.0 + 5. ( − 3 ) 8 = − 2 z = − 3 + 2. ( − 1 ) + 5.1 8 = 0  

⇒ I = ( − 1 ; − 2 ; 0 )  

Ta có

M A → + 2 M B → + 5 M C → = M I → + I A → + 2 M I → + 2 I B → + 5 M I → + 5 I C →  

= 8 M I → + I A → + 2 I B → + 5 I C → = 8 M I →  

⇒ M A → + 2 M B → + 5 M C →  min ⇔ 8 M I →  min <=> M là hình chiếu của I lên (P)

Gọi Δ  là đường thẳng đi qua I − 1 ; 2 ; 0  và vuông góc với

( P ) : 2 x + 4 y + 3 z − 19 = 0  có vectơ chỉ phương là 2 ; 4 ; 3 ⇒ Δ : x = − 1 + 2 t y = − 2 + 4 t z = 3 t  

Thế vào (P)

⇒ 2 ( − 1 + 2 t ) + 4 ( − 2 + 4 t ) + 3 ( 3 t ) − 19 ⇔ t = 1  

⇒ x = 1 y = 2 z = 3 ⇒ M 1 ; 2 ; 3 ⇒ a + b + c = 6  

24 tháng 3 2019

Đáp án D  

3 tháng 6 2018

Đáp án A

Ta có: a → ; b → = m - 4 ; 2 m + 1 ; 2 - m 2 - m  Để  a → , b → , c →  đông phẳng thì  a → ; b → c → = 0 ⇔ 2 m + 1 m - 2 + 2 2 - m 2 - m = 0 ⇔ - 3 m - 2 + 4 - 2 m = 0 ⇔ m = 2 5 .

18 tháng 9 2017

Đáp án C.

Ta có B C →   = - 2 ; - 1 ; - 2  nên phương trình đường thẳng BC là x = 1 - 2 t y = - t   ( t ∈ ℝ ) z = 2 - 2 t  .

Gọi I là hình chiếu vuông góc của A trên BC, H là hình chiếu vuông góc của A trên mặt phẳng (P) . Khi đó A H   =   d A ; P ≤ A I  và AH đạt giá trị lớn nhất khi H ≡ I . Suy ra mặt phẳng (P) qua I và vuông góc với AI.

Từ I ∈ B C ⇒ I 1 - 2 t ; - t ; 2 - 2 t  và A I   → = - 1 - 2 t ; - t - 5 ; - 1 - 2 t  .

Lại có A I ⊥ B C ⇔ A I   → . B C   → = 0 ⇔ 2 ( 1 + 2 t ) + ( t + 5 ) + 2 ( 1 + 2 t ) = 0 ⇔ t = - 1 .

Mặt phẳng (P) đi qua I(3;1;4) và nhận VTPT là A I   → = 1 ; - 4 ; 1  nên có phương trình tổng quát là: x - 4 y + z - 3 = 0 .

Vậy a = 1 , b = - 4 , c = 1 , d = - 3 → M = 1 + 1 - 4 - 3 = - 2 7 .

12 tháng 6 2017

Đáp án A

Vì  M ∈ d  nên  M t + 3 ; − t − 2 ; 2 t + 1 ,   t ∈ ℝ

Đường thẳng  Δ  có vtcp  u Δ → = − 1 ; 2 ; − 3 .

Đường thẳng  d ' : qua   M t + 3 ; − t − 2 ; 2 t + 1 vtcp   u d ' → = u Δ → = − 1 ; 2 ; − 3

⇒ d ' : x − t + 3 − 1 = y + t + 2 2 = z − 2 t + 1 − 3

M’ là hình chiếu song song của M trên (P)

⇒ M ' = d ' ∩ P ⇒ M ' 5 9 t + 2 ; − 1 9 t ; 2 3 t − 2 .

8 tháng 1 2017