Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng d đi qua điểm A(1;2;3) và có vectơ chỉ phương u ⇀ = ( 1 ; 2 ; 1 )
- Mặt phẳng (P) có vectơ pháp tuyến n ⇀ = ( 1 ; 1 ; - 1 )
- Gọị B là giao điểm của đườn thẳng d và mặt phẳng (P) cho B(2;4;4)
- Vì đường thẳng cần tìm ∆ nằm trong mặt phẳng α , đồng thời vuông góc và cắt đường thẳng d cho nên đường thẳng ∆ đi qua điểm B(2;4;4) và có vectơ chỉ phương
u ∆ ⇀ = u ⇀ ; n ⇀ = ( - 3 ; 2 ; - 1 ) ⇒ x = 2 - 3 t y = 4 + 2 t z = 4 - t
- Đối chiếu đáp án ta thấy đường thẳng
∆
3
của đáp án A có cùng véctơ chỉ phương và đi qua điểm
M(5;2;5) thuộc
∆
:
⇒
x
=
2
-
3
t
y
=
4
+
2
t
z
=
4
-
t
Chọn đáp án A.
Đáp án D
Đường thẳng d 1 đi qua M 1 1 ; − 2 ; − 1 và có VTCP u 1 → = 3 ; − 1 ; 2 .
Đường thẳng d 2 đi qua M 2 12 ; 0 ; 10 và có VTCP u 2 → = − 3 ; 1 ; − 2 .
Như vậy: u 1 → = − u 2 → , M 1 ∉ d 2 . Suy ra d 1 / / d 2 .
Chú ý: Hai đường thẳng d 1 và d 2 song song nên em không thể lấy tích có hướng của hai VTCP để tìm VTPT của mặt phẳng vì tích có hướng của hai vectơ cùng phương là vectơ-không.
Gọi n → là một VTPT của mặt phẳng α thì vuông n → góc với hai vectơ không cùng phương