Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp giải:
Vì điểm M thuộc d nên tham số hóa tọa độ điểm M, tính tổng M A 2 + M B 2 đưa về khảo sát hàm số để tìm giá trị nhỏ nhất
Lời giải:
Vì suy ra A M → = ( t - 2 ; 4 - 2 t ; 2 t ) B M → = ( t ; 2 - 2 t ; 2 t - 2 )
Khi đó
Dễ thấy
Vậy Tmin = 10. Dấu bằng xảy ra khi và chỉ khi t = 1 => M(2;0;5)
Đáp án A
Vì M ∈ d nên M t + 3 ; − t − 2 ; 2 t + 1 , t ∈ ℝ
Đường thẳng Δ có vtcp u Δ → = − 1 ; 2 ; − 3 .
Đường thẳng d ' : qua M t + 3 ; − t − 2 ; 2 t + 1 vtcp u d ' → = u Δ → = − 1 ; 2 ; − 3
⇒ d ' : x − t + 3 − 1 = y + t + 2 2 = z − 2 t + 1 − 3
M’ là hình chiếu song song của M trên (P)
⇒ M ' = d ' ∩ P ⇒ M ' 5 9 t + 2 ; − 1 9 t ; 2 3 t − 2 .
Gọi I(x;y;z) là điểm thỏa mãn 3 I A ⇀ - 2 I B ⇀ = 0 → ⇔ 3 I A ⇀ = 2 I B ⇀
Ta có
Khi đó 3 I A ⇀ = 2 I B ⇀
Ta có:
(vì 3 I A ⇀ - 2 I B ⇀ = 0 ⇀ )
Khi đó | 3 M A ⇀ - 2 M B ⇀ | = | M I ⇀ | = M I nhỏ nhất khi M là hình chiếu của I trên mặt phẳng (P)
Phương trình đường thẳng d qua I(-3;-2;8) và vuông góc với (P) là
Suy ra M = d ∩ ( P ) nên tọa độ điểm M là nghiệm của hệ
Từ đó
⇒ S = 9 a + 3 b + 6 c = - 33 - 8 + 44 = 3
Chọn đáp án B.
Đáp án B
Đường thẳng AB: qua A 0 ; 4 ; 1 vtcp u → = AB → = − 1 ; − 2 ; − 2 ⇒ AB : x = t y = 4 + 2 t z = 1 + 2 t
Gọi H là hình chiếu vuông góc của điểm M trên đường thẳng AB.
H là trung điểm của MM’ nên M ' − 19 9 ; 13 9 ; − 8 9 .
Vậy tổng tọa độ của điểm M’ là: − 14 9 .
M ∈ d ⇒ M - 2 t - 1 ; t + 4 ; 2 t M A 2 - M B 2 - M C 2 = - 9 t 2 - 18 t + 12 = 21 - 9 t + 1 2 ≤ 21
Dấu “=” xảy ra khi t = -1
Vậy M A 2 - M B 2 - M C 2 khi M ( 1;3;-2 )
Đáp án C
Chọn B.
Phương pháp: Gọi (P) là mặt phẳng đi qua M vuông góc với d.