K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018


25 tháng 9 2019

Đáp án A

Phương pháp giải:

Vì điểm M thuộc d nên tham số hóa tọa độ điểm M, tính tổng   M A 2 + M B 2  đưa về khảo sát hàm số để tìm giá trị nhỏ nhất

Lời giải:

Vì  suy ra A M → = ( t - 2 ; 4 - 2 t ; 2 t ) B M → = ( t ; 2 - 2 t ; 2 t - 2 )

Khi đó 

Dễ thấy 

Vậy Tmin = 10. Dấu bằng xảy ra khi và chỉ khi t = 1 => M(2;0;5)

16 tháng 10 2017

12 tháng 6 2017

Đáp án A

Vì  M ∈ d  nên  M t + 3 ; − t − 2 ; 2 t + 1 ,   t ∈ ℝ

Đường thẳng  Δ  có vtcp  u Δ → = − 1 ; 2 ; − 3 .

Đường thẳng  d ' : qua   M t + 3 ; − t − 2 ; 2 t + 1 vtcp   u d ' → = u Δ → = − 1 ; 2 ; − 3

⇒ d ' : x − t + 3 − 1 = y + t + 2 2 = z − 2 t + 1 − 3

M’ là hình chiếu song song của M trên (P)

⇒ M ' = d ' ∩ P ⇒ M ' 5 9 t + 2 ; − 1 9 t ; 2 3 t − 2 .

12 tháng 10 2018

Gọi I(x;y;z) là điểm thỏa mãn 3 I A ⇀ - 2 I B ⇀ = 0 → ⇔ 3 I A ⇀ = 2 I B ⇀

Ta có 

Khi đó  3 I A ⇀ = 2 I B ⇀

Ta có:

 (vì 3 I A ⇀ - 2 I B ⇀ = 0 ⇀ )

Khi đó | 3 M A ⇀ - 2 M B ⇀ | = | M I ⇀ | = M I  nhỏ nhất khi M là hình chiếu của I trên mặt phẳng (P)

Phương trình đường thẳng d qua I(-3;-2;8) và vuông góc với (P) 

Suy ra M = d ∩ ( P )  nên tọa độ điểm M là nghiệm của hệ

Từ đó 

⇒ S = 9 a + 3 b + 6 c = - 33 - 8 + 44 = 3

Chọn đáp án B.

16 tháng 9 2017

28 tháng 6 2017

Đáp án B

Đường thẳng AB:  qua   A 0 ; 4 ; 1 vtcp   u → = AB → = − 1 ; − 2 ; − 2 ⇒ AB : x = t y = 4 + 2 t z = 1 + 2 t

Gọi H là hình chiếu vuông góc của điểm M trên đường thẳng AB.

H là trung điểm của MM’ nên  M ' − 19 9 ; 13 9 ; − 8 9 .

Vậy tổng tọa độ của điểm M’ là:  − 14 9 .

28 tháng 6 2019

M ∈ d ⇒ M - 2 t - 1 ; t + 4 ; 2 t M A 2 - M B 2 - M C 2 = - 9 t 2 - 18 t + 12 = 21 - 9 t + 1 2 ≤ 21

Dấu “=” xảy ra khi t = -1

Vậy  M A 2 - M B 2 - M C 2  khi M ( 1;3;-2 )

Đáp án C

13 tháng 7 2019

Chọn B.

Phương pháp: Gọi (P) là mặt phẳng đi qua M vuông góc với d.