Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (P) là mặt phẳng chứa đường tròn ( ω )
Mặt cầu (S) có tâm I(2;4;6) và có bán kính R = 24 = 2 6 . Ta có:
I A = 4 2 + 2 2 + 8 2 = 4 6
Do hai đường tròn ω và ω ' có cùng bán kính nên IA=IM = 4 6
Tam giác IAK vuông tại K nên ta có
I K 2 = I H . I A ⇒ I H = I K 2 I A = 24 4 6 = 6
Do H là tâm của đường tròn ω nên điểm H cố định.
Tam giác IHM vuông tại H nên ta có:
M H = I M 2 - I H 2 = 4 6 2 - 6 2 = 3 10
Do H cố định thuộc mặt phẳng (P), M di động trên mặt phẳng (P) và M H = 3 10 không đổi. Suy ra điểm M thuộc đường tròn có tâm là H và có bán kính r = H M = 3 10
Chọn đáp án B.
Chọn đáp án A
Mặt cầu (S) có tâm I(1;1;0) bán kính R = 2. Kẻ tiếp tuyến MA và MB sao cho M, A, I, B đồng phẳng suy ra đường tròn (C) là đường tròn đường kính AB.
Đáp án C.
Phương trình đường thẳng AB là:
Điểm M cố định nên điểm C thuộc đường tròn cố định tâm M(-2;2;1); bán kính r = 3 2
Đáp án B