Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Khoảng cách từ điểm M(1;-2;3) đến mặt phẳng (P) là d = 6 . 1 + 3 . 2 + 2 . 3 - 6 6 2 + 9 + 4 = 12 7 .
Đáp án C.
Đặt A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c .
Mà M là trọng tâm tam giác ABC ⇒ a 3 = 1 b 3 = 2 c 3 = 3 ⇔ a = 3 ; b = 6 ; c = 9 .
Phương trình mặt phẳng P : x 3 + y 6 + z 9 = 1 ⇔ 6 x + 3 y + 2 z − 18 = 0 .
Đáp án C.
Đặt A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c .
Mà M là trọng tâm tam giác ABC ⇒ a 3 = 1 b 3 = 2 c 3 = 3 ⇔ a = 3 ; b = 6 ; c = 9 .
Phương trình mặt phẳng P : x 3 + y 6 + z 9 = 1 ⇔ 6 x + 3 y + 2 z - 18 = 0 .
Đáp án A
Phương pháp: Cho u 1 → ; u 2 → là cặp vectơ chỉ phương của mặt phẳng (α), khi đó n → =[ u 1 → , u 2 → ] là một vectơ pháp tuyến của (α)
Cách giải:
Gọi mặt phẳng cần tìm là (α)
(P): x+3y - 2z - 1=0 có một VTPT
Vì
Khi đó, (α) có một vectơ pháp tuyến là: n → =[ u 1 → , u 2 → ] = (5; - 1;1)
Phương trình (α): 5x - y+z - 9=0