Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương pháp
Công thức tính diện tích xung quanh hình nón có bán kính đáy , R chiều cao h và đường sinh l: S x q = π R l .
Cách giải:
Đáp án C
Phương pháp
+) Khi quay tam giác IOM quanh cạnh góc vuông OI ta được hình nón có đường cao IO và bán kính đáy IM.
+) Sử dụng công thức tính diện tích xung quanh của hình nón S x q = π r l trong đó r, l lần lượt là bán kính đáy và độ dài đường sinh của hình nón.
Cách giải
Khi quay tam giác IOM quanh cạnh góc vuông OI ta được hình nón có đường cao IO và bán kính đáy IM. Tam giác OIM vuông cân tại I nên IM = IO = a
⇒ r = a ; h = a ⇒ l = r 2 + h 2 = a 2 ⇒ S x q = π r l = π a . a 2 = π a 2 2
Đáp án B
Hình nón có chiều cao AB và bán kính BC. Diện tích xung quanh của hình nón là S = π a .2 a = 2 π a 2
Đáp án D
Ta có O A . sin O A H ^ = O H = a ⇒ O A = 2 a
Lại có O B = O A tan A ^ = 2 a 3 suy ra thể tích khối nón tròn xoay tạo bởi tam giác AOB khi quay quanh trục OA là V = 1 3 πOB 2 . OA = 8 9 πa 3
Vì B A C ^ = 90 o nên BC = 5. Khi đó
S 1 S 2 = π . 4 . 5 π . 3 . 5 = 4 3
Đáp án A
Đáp án A