K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2019

Chọn B.

+) A sai vì: “nếu a và b cùng vuông góc với c thì a và b hoặc song song hoặc chéo nhau".

+) C sai do:

   - Giả sử hai đường thẳng a và b chéo nhau, ta dựng đường thẳng c là đường vuông góc chung của a và b.

   - Khi đó góc giữa a và c bằng với góc giữa b và c và cùng bằng 90°, nhưng hiển nhiên hai đường thẳng a và b không song song.

+) D sai do: giả sử a vuông góc với c, b song song với c, khi đó góc giữa a và c bằng 90°, còn góc giữa b và c bằng 0°.

⇒ Do đó B đúng.

17 tháng 4 2022

B

NV
17 tháng 4 2022

c, d đều là mệnh đề sai

Ví dụ: a và b cắt nhau và cùng thuộc mp (P), nếu c vuông góc (P) thì c vuông góc cả a và b \(\Rightarrow\) góc giữa a và c bằng góc giữa b và c (đều bằng 90 độ) nhưng a và b không song song

31 tháng 12 2018

a) Đúng

b) Đúng

c) Sai

d) Sai

e) Sai

f) Đúng

31 tháng 3 2017

a) Trong không gian nếu hai đường thẳng a và b cùng vuông góc với đường thẳng c thì nói chung a và b không song song với nhau vì a và b có thể cắt nhau hoặc có thể chéo nhau.

b) Trong không gian nếu a ⊥ b và b ⊥c thì a và c vẫn có thể cắt nhau hoặc chéo nhau do đó, nói chung a và c không vuông góc với nhau.

1 tháng 10 2019

a) Sai

b) Sai

c) Đúng

d) Sai

29 tháng 9 2018

a) Đúng

b) Đúng

c) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)

d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.

e) Sai, chẳng hạn a và b cùng ở trong mp(P) và mp(P) ⊥ d. Lúc đó a và b cùng vuông góc với d nhưng a và b có thể không song song nhau.

3 tháng 6 2018

Trong không gian nếu hai đường thẳng a và b cùng vuông góc với đường thẳng c thì nói chung a và b không song song với nhau vì a và b có thể cắt nhau hoặc có thể chéo nhau.

20 tháng 11 2019

Trong không gian nếu a ⊥ b và b ⊥c thì a và c vẫn có thể cắt nhau hoặc chéo nhau do đó, nói chung a và c không vuông góc với nhau.

Ví dụ. Cho hình lập phương ABCD.A’B’C’D’ có:

+ AB và BC cùng vuông góc với BB’ nhưng AB và BC cắt nhau tại B.

 

+ AB và A’D’ cùng vuông góc với BB’ nhưng AB và BC chéo nhau.