Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
van la 29 ban thoi
bởi vì có thể có 1 người thì cả văn lẫn toán
số học sinh thi môn nhảy xa là :
19-10=9(bạn)
Số học sinh thi môn nhảy cao là :
28-10=18(bạn)
Số học sinh k thi môn nào là :
47-18-9-10=10(bạn)
Đ/S: 10 bạn
Số học sinh thi môn nhảy xa nhưng không thi môn nhảy cao bằng số học sinh thi môn nhảy xa trừ đi số học sinh thi cả hai môn.
Số học sinh thi môn nhảy xa nhưng không thi môn nhảy cao = 31 - 11
Số học sinh thi môn nhảy xa nhưng không thi môn nhảy cao = 20
Số học sinh thi môn nhảy xa nhưng không thi môn nhảy cao bằng số học sinh thi môn nhảy xa trừ đi số học sinh thi cả hai môn.
Số học sinh thi môn nhảy xa nhưng không thi môn nhảy cao = 31 - 11
Số học sinh thi môn nhảy xa nhưng không thi môn nhảy cao = 20
Gọi số học sinh đạt giải cả 3 môn là a ( học sinh ). Gọi số học sinh đạt giải cả 2 môn là b ( học sinh ). Gọi số học sinh chỉ đạt giải 1 môn là c ( học sinh ).
Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 giải.
Vì tổng số số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. Vì bất kì 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên:
- Có ít nhất 1 học sinh đạt giải cả môn Văn và Toán.
- Có ít nhất 1 học sinh đạt giải cả môn Toán và Ngoại Ngữ.
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ
Do vậy b = 3
Gỉa sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là: 3 x 2 + 2 x 3 + 4 = 16 > 15 ( loại ).
Do đó a < 2, nên a = 1
Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12
Nếu b = 3 thì c = 12 - 2 x 3 = ( đúng )
Nếu b = 4 thì c = 12 - 2 x 4 = 4 ( loại vì trái với điều kiện b < c)
Vậy 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải
Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 ( bạn)
Bài giải:
Gọi số học sinh đạt giải cả 3 môn là a (học sinh)
Gọi số học sinh đạt giải cả 2 môn là b (học sinh)
Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh)
Tổng số giải đạt được là:
3 x a + 2 x b + c = 15 (giải).
Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c.
Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên:
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán.
- Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ.
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ.
Do vậy b= 3.
Giả sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là:
3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1.
Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12.
Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng).
Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c)
Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải.
Đội tuyển đó có số học sinh là:
1 + 3 + 6 = 10 (bạn).
số học sinh học cả hai mônlaf: (22 + 27) - 29 = 20 học sinh