K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

PTHĐGĐ là:

1/2x^2-mx+2m+1=0

Δ=(-m)^2-4*1/2(2m+1)

=m^2-4m-2

Để (P) tiêp xúc (d) thì m^2-4m-2=0

=>\(m=2\pm\sqrt{6}\)

16 tháng 5 2023

Phương trình hoành độ giao điểm của (P) và (d):

1/2 x² = mx - 2m - 1

⇔ x² = 2mx - 4m - 2

⇔ x² - 2mx + 4m + 2 = 0

Để (P) và (d) tiếp xúc thì phương trình hoành độ giao điểm của chúng có nghiệm kép

⇔ ∆´ = 0

⇔ m² - 4m - 2 = 0

∆´ = 4 + 2 = 6

m₁ = 2 + √6

m₂ = 2 - √6

Vậy m = 2 + √6; m = 2 - √6 thì (P) và (d) tiếp xúc

a: Khi m=3 thì (d): y=2x+3

Phương trình hoành độ giao điểm là:

\(x^2-2x-3=0\)

=>(x-3)(x+1)=0

=>x=3 hoặc x=-1

Khi x=3 thì y=9

Khi x=-1 thì y=1

b: Phương trình hoành độ giao điểm là:

\(x^2-2x-m=0\)

Δ=4+4m

Để (P) tiếp xúc với (d) thì 4m+4=0

hay m=-1

Phương trình hoành độ giao điểm là:

\(-\dfrac{1}{4}x^2-mx-n=0\)

THeo đề, ta có:

\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)

26 tháng 2 2022

a, bạn tự vẽ nhé 

b, Gọi ptđt (D1) có dạng y = ax + b 

(D1) // (D) \(\hept{\begin{cases}a=\frac{1}{2}\\b\ne2\end{cases}}\)

=> (D1) : y = x/2 + b 

Hoành độ giao điểm tm pt 

\(\frac{x^2}{4}=\frac{x}{2}+b\Leftrightarrow x^2=2x+4b\Leftrightarrow x^2-2x-4b=0\)

\(\Delta'=1-\left(-4b\right)=1+4b\)

Để (D1) tiếp xúc (P) hay pt có nghiệm kép 

\(1+4b=0\Leftrightarrow b=-\frac{1}{4}\)

suy ra \(\left(D1\right):y=\frac{x}{2}-\frac{1}{4}\)

toạ độ M là tương giao của cái nào bạn ? 

a: Thay x=0 và y=9 vào (d), ta được:

\(b+6\cdot0=9\)

hay b=9

Vậy: (d): y=6x+9

b: Phương trình hoành độ giao điểm là:

\(ax^2-6x-9=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot a\cdot\left(-9\right)=36a+36\)

Để (d) tiếp xúc với (P) thì 36a+36=0

hay a=-1

28 tháng 5 2022

`a)` Vì `(d)` đi qua `M(0;9)` nên thay `x=0` và `y=9` vào `(d)` có: `b=9`

`b)` Với `b=9=>(d):y=6x+9`

Xét ptr hoành độ của `(d)` và `(P)` có:

         `ax^2=6x+9`

`<=>ax^2-6x-9=0`       `(1)`

Để `(d)` tiếp xúc với `(P)` thì ptr `(1)` có nghiệm kép

    `<=>\Delta' =0`

    `<=>(-3)^2-a.(-9)=0`

    `<=>a=-1` (t/m)

26 tháng 4 2020

a) PT hoành dộ giao điểm d và (P):

x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)

d tiếp xúc với (P) <=> m=-2 tìm được x=-1

Tọa độ điểm A(-1;1)

b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1

Điều kiện để 2 giao điểm khác phía trục tung là:m >-1

Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)

Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)

Phương trình hoành độ giao điểm là:

\(x^2-2x-m^2-m+3=0\)

\(\Delta=\left(-2\right)^2-4\cdot1\cdot\left(-m^2-m+3\right)\)

\(=4+4m^2+4m-12=4m^2+4m-8\)

\(=4\left(m+2\right)\left(m-1\right)\)

Để (P) tiếp xúc với (d) thì (m+2)(m-1)=0

=>m=-2(loại) hoặc m=1(nhận)