Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phát biểuđúng: a , c, e, f, g, i, j, l
b. Phép biến hình biến đường tròn thành đường tròn có bán kính bằng nó có thể là phép tịnh tiến
d. Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính
h. Với bất kì 2 điểm A, B và ảnh A’, B’ của chúng qua 1 phép dời hình, ta luôn có AB = A’B’.
k. Nếu phép dời hình biến điểm A thành điểm B thì nó cũng biến điểm B thành A (phát biểu không đúng với phép tịnh tiến)
a) M(-1;1) đối xứng qua trục Oy ta được N(-1;1).
Gọi M'(x;y) là ảnh của N(-1;1) qua phép tịnh tiến theo vectơ v → = ( 2 ; 0 )
b) Gọi P(x;y) là ảnh của M(1;1) qua phép tịnh tiến theo v → = ( 2 ; 0 )
P(3;1) đối xứng qua trục Oy ta được M"(-3;1)
Đáp án A
Các phát biểuđúng: 2, 3,5,6
1. Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó
4. Phép đối xứng tâm biến đường thẳng thành đường thằng song song hoặc trùng với nó
7. Phép biến hình F’ có được nhờ thực hiệnphép vị tựkhông phải là phép dời hình
Gọi d 1 là ảnh của d qua phép quay tâm 0 góc 90 o . Vì d chứa tâm quay O nên d 1 cũng chứa O. Ngoài ra d 1 vuông góc với d nên d 1 có phương trinh: 9x + 2y = 0.
Gọi d' là ảnh của d 1 qua phép tịnh tiến vectơ v. Khi đó phương trình của d' có dạng x + 2y + C = 0. Vì d' chứa O′(3;1) là ảnh của O qua phép tịnh tiến vectơ v nên 3 + 2 + C = 0 từ đó C = -5. Vậy phương trình của d' là x + 2y – 5 = 0.
\(T_{\overrightarrow{v}}\left(M\right)=M_1\Rightarrow\left\{{}\begin{matrix}x_{M1}=3+1=4\\y_{M1}=2+5=7\end{matrix}\right.\) \(\Rightarrow M_1\left(4;7\right)\)
\(Q_{\left(0;90^0\right)}\left(M_1\right)=M_2\Rightarrow\left\{{}\begin{matrix}x_{M2}=-y_{M1}=-7\\y_{M2}=x_{M1}=4\end{matrix}\right.\)
Vậy ảnh của điểm M qua 2 phép dời hình nói trên là \(M_2\left(-7;4\right)\)
Gọi tam giác A'B'C' là ảnh của tam giác ABC qua phép biến hình trên.
(e)Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép vị tự tâm O tỉ số k = -2
+) Qua phép đối xứng qua trục Oy biến tam giác ABC thành tam giác A 1 B 1 C 1
Do đó, tọa độ A 1 - 1 ; 1 ; B 1 0 ; 3 v à C 1 - 2 ; 4 .
+) Qua phép vị tự tâm O tỉ số k = -2 biến tam giác A 1 B 1 C 1 thành tam giác A 2 B 2 C 2
Biểu thức tọa độ :
Tương tự; B 2 0 ; - 6 v à C 2 4 ; - 8
Vậy qua phép đối xứng trục Oy và phép vị tự tâm O tỉ số k = -2, biến các điểm A, B, C lần lượt thành
A 2 2 ; - 2 ; B 2 0 ; - 6 v à C 2 4 ; - 8 .
Đáp án C
Phép biến hình có được nhờ thực hiện liên tiếp phép tịnh tiến và một phép đối xứng trục ( với trục là một đường thẳng cắt đường thẳng chứađoạn AB) là một phép dời hình. Nhưng A’B ≠ AB’.
Với bất kì 2 điểm A, B và ảnh A’, B’ của chúng qua 1 phép dời hình, ta luôn có AB =A’B’.