K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

Đáp án A

Sử dụng BĐT buhinhacopski ta có

x − 2 + y + 3 2 ≤ 1 + 1 x − 2 + y + 3 = 2 x + y + 2 .

Tức là ta có  x + y + 1 2 ≤ 4 2 x + y + 2   . Đặt  t = x + y   . Chú ý rằng  t ≥ − 1   .

Ta có

t + 1 2 ≤ 8 t + 8 ⇔ t 2 − 6 t − 7 ≤ 0 ⇔ − 1 ≤ t ≤ 7.  

Vậy max t = 7  xảy ra khi   x − 2 = y + 3 x + y = 7 ⇔ x = 6 y = 1 .

10 tháng 1 2019

Đáp án C

23 tháng 10 2019

Đáp án D

19 tháng 3 2021

Toán lớp 0 ?????  \(\text{ 🤔 }\text{ 🤔 }\text{ 🤔 }\text{ 😅 }\text{ 😅 }\text{ 😅 }\)

19 tháng 5 2019

8 tháng 1 2019

Chọn B

17 tháng 4 2017

Đáp án C.

Ta có:

G T ⇔ 5 x + 2 y + x + 2 y − 3 − x − 2 y = 5 x y − 1 − 3 1 − x y + x y − 1.

Xét hàm số

f t = 5 t + t − 3 − t ⇒ f t = 5 t ln 5 + 1 + 3 − t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên ℝ  suy ra f x + 2 y = f x y − 1 ⇔ x + 2 y = x y − 1

⇔ x = 2 y + 1 y − 1 ⇒ T = 2 y + 1 y − 1 + y . Do x > 0 ⇒ y > 1  

Ta có:  T = 2 + y + 3 y − 1 = 3 + y − 1 + 3 y − 1 ≥ 3 + 2 3 .

26 tháng 2 2017

24 tháng 12 2018

Đáp án C.

Ta có x x − 3 + y y − 3 + x y

= x 2 + y 2 + x y − 3 x − 3 y = x 2 + y 2 + x y + 2 − 3 x + y − 2

Khi đó, giả thiết trở thành:

log 3 x + y x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 − 3 x + y − 2  

⇔ log 3 x + y − log 3 x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 − 3 x + y − 2  

⇔ 3 x + y + log 3 3 x + y = x 2 + y 2 + x y + 2 + log 3 x 2 + y 2 + x y + 2  

Xét hàm số f t = t + log 3 t  trên khoảng  0 ; + ∞ ,

có f ' t = 1 + 1 t ln 3 > ;   ∀ t > 0.

Suy ra f( t) là hàm số đồng biến trên  0 ; + ∞

mà f 3 x + y = f x 2 + y 2 + x y + 2  

⇔ 2 x + y 2 − 6 2 x + y + 5 = − 3 y − 1 2 ≤ 0 ⇔ 1 ≤ 2 x + y ≤ 5.  

Khi đó P = 1 + 2 x + y − 5 x + y + 6 ≤ 1  

vì 2 x + y − 5 ≤ 0 x + y + 6 > 0 .  Vậy  P m a x = 1.

8 tháng 12 2017

Đáp án C