Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên có 6 chữ số có dạng: \(\overline{abcdef}\)
TH1: \(a=3\)
f có 2 cách chọn.
\(\overline{bcde}\) có \(A^4_6\) cách lập.
\(\Rightarrow\) Lập được \(2A^4_6=720\) số tự nhiên thỏa mãn.
TH2: \(b=3\)
Nếu \(f=0\Rightarrow\) a có 6 cách chọn.
\(\overline{cde}\) có \(A_5^3\) cách lập.
\(\Rightarrow\) Lập được \(6.A_5^3=360\) số tự nhiên thỏa mãn.
Nếu \(f=5\Rightarrow\) a có 5 cách chọn.
\(\overline{cde}\) có \(A_5^3\) cách lập.
\(\Rightarrow\) Lập được \(5A_5^3=300\) số tự nhiên thỏa mãn.
Vậy lập được \(720+360+300=1380\) số tự nhiên thỏa mãn.
Đáp án D
Sắp xếp cụm số 3,4,5 có 2 cách sắp xếp là 345 và 543
TH1:Cụm 2 số 3,4,5 đứng đầu có:
2.7.6.5 = 240 số thỏa mãn
TH2: Cụm 3 số 3,4,5 không đứng đầu có 3 cách sắp xếp là
x345xx; xx345x; xxx345
3 chữ số còn lại có: 6.6.5 = 180 cách chọn và sắp xếp
Do đó có 2.3.180 = 1080 số thỏa mãn
Theo quy tắc cộng có:
420 + 1080 = 1500 số thỏa mãn yêu cầu bài toán
Chọn B.
? TH1: 1 nằm ở vị trí đầu
4 chữ số phía sau có: 7.6.5.4 =840 (cách)
? TH2: 1 không nằm ở đầu
Có 2 cách chọn vị trí cho số 1
Vị trí đầu có 6 cách
3 vị trí còn lại có 6.5.4 = 120 (cách)
Số các số thỏa là: 2.6.120 = 1440
Số cách chọn là: 840 + 1440 = 2280 (cách)
Đáp án : D
Ta xét hai trường hợp sau:
+) TH1. chọn d có 3 cách,b có 4 cách, c có 3 cách nên có 3.4.3 = 36 số thỏa mãn.
+) TH2.
Với d = 0 thì chọn a có 4 cách, c có 3 cách nên có 4.3 = 12 số thỏa mãn.
Với d khác 0, chọn d có 2 cách, a có 3 cách, c có 3 cách nên có 2.3.3 = 18 số thỏa mãn.
Tóm lại có tất cả 36 + 12 + 18 = 66 số thỏa mãn.
Ta xét hai trường hợp sau:
+) TH1 , chọn d có 3 cách, b có 4 cách, c có 3 cách nên có
3.4.3 = 36 số thỏa mãn.
+) TH2.
Với d = 0 thì có 4 cách chọn a, c có 3 cách nên có 4.3 = 12 số thỏa mãn.
Với d ≠ 0, chọn d có 2 cách, a có 3 cách, c có 3 cách nên có 2.3.3 = 18 số thỏa mãn.
Tóm lại có tất cả 36 + 12 + 18 = 66 số thỏa mãn.
Chọn D,
Gọi số tự nhiên cần tìm có dạng .
TH1: Nếu a=1 khi đó có cách chọn 4 chữ số xếp vào b;c;d;e.
TH2: Nếu a khác 1 , khi đó: Có 6 cách chọn a. Có 2 cách xếp chữ số 1 vào số cần tạo ở vị trí b hoặc c. Các chữ số còn lại trong số cần tạo có cách chọn.
Như vậy trường hợp này có số.
Vậy có tất cả 840+1440=2280 số.
chọn A.
Đáp án D
Phương pháp: Xét từng trường hợp: chữ số đầu tiên bằng 1, chữ số thứ hai bằng 1, chữ số thứ ba bằng 1.
Cách giải: Gọi số đó là a b c d e
- TH1: a = 1
+ b có 7 cách chọn.
+ c có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có: 7.6.5.4 = 840 số
- TH2: b = 1
+ a ≠ b , a ≠ 0 , nên có 6 cách chọn.
+ c có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có: 6.6.5.4 = 720 số.
- TH3: c = 1.
+ a ≠ c , a ≠ 0 , nên có 6 cách chọn.
+ b có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có 6.6.5.4 = 720 số.
Vậy có tất cả 840 + 720 + 720 = 2280 số.
Nếu viết 00345 thì ta hiểu đó là số có ba chữ số 345. Với quy ước như vậy ta lí luận như sau: Từ dãy hình thức ∗∗∗∗∗ ta lần lượt thay dấu ∗ bởi các chữ số. Chữ số 3 có 5 cách đặt, khi đã đặt số 3, có 4 cách đặt số 4, có 3 cách đặt số 5. Khi đã đặt xong các số 3, 4, 5 rồi còn hai chỗ nữa. Ta có 7 cách đặt một trong 7 số còn lại vào chỗ dấu ∗ đầu tiên tính từbên trái và 7 cách đặt chữ số vào dấu ∗ còn lại. Vậy theo quy tắc nhân, có 5. 4. 3. 7. 7 = 2940 số nguyên dương không vượt quá 100000 mà chứa một chữ số 3, một chữ số 4 và một chữ số 5.