K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
1 tháng 7 2021

Đánh số các người tham gia từ \(A_1\)đến \(A_{16}\).

Giả sử \(A_1\)thắng nhiều nhất. 

Có: \(\frac{16\times15}{2}=120\)(ván đấu) suy ra \(A_1\)thắng \(\ge\frac{120}{16}=7,5\)

suy ra \(A_1\)thắng ít nhất \(8\)ván. 

Không mất tính tổng quát, giả sử \(A_1\)thắng \(A_2,A_3,...,A_9\).

Giả sử trong những người này \(A_2\)thắng nhiều nhất.

\(A_2,...,A_9\)đánh \(\frac{8\times7}{2}=28\)(ván) suy ra \(A_2\)thắng \(\ge\frac{28}{8}=3,5\)

suy ra \(A_2\)thắng ít nhất \(4\)ván (khi đấu với \(A_3,...,A_9\))

Giả sử \(A_2\)thắng \(A_3,...,A_6\).

Giả sử \(A_3\)thắng nhiều nhất trong những người này. 

\(A_3,...,A_6\)đánh \(\frac{4\times3}{2}=6\)(ván) suy ra \(A_3\)thắng \(\ge\frac{6}{4}=1,5\)

suy ra \(A_3\)thắng ít nhất \(2\)ván. 

Giả sử \(A_3\)thắng \(A_4,A_5\)

Khi đó giả sử \(A_4\)thắng \(A_5\)thì ta có dãy thỏa mãn là: \(A_1,A_2,A_3,A_4,A_5\)

Ta có đpcm. 

2 tháng 7 2021

linh tinh

29 tháng 6 2016

Bạn mở Euru ra mà xem đúng hay sai.