Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi n là nồng độ của trà 1 lúc ban đầu
\(n2=\dfrac{\Delta m.n}{\Delta m+m2}=\dfrac{n}{1+\dfrac{m2}{\Delta m}}\left(1\right)\)
thay \(x2=\dfrac{\Delta m}{m2}\)
thay vào trường hợp 1 ta có \(n2=\dfrac{n}{1+\dfrac{1}{x2}}=\dfrac{n.x2}{x2+1}\)
nếu trường hợp đổ trở lại m từ cốc 2 sang cốc 1thì nồng độ nước trà cốc 1
\(n1=\dfrac{\left(m1-\Delta m\right).n+\Delta m.n2}{\left(m1-\Delta m\right)+\Delta m}=\dfrac{\left(m1-\Delta m\right).n+\Delta m.\dfrac{n.x2}{x2+1}}{m1}=n-\dfrac{\Delta m.n}{m1}+\dfrac{\Delta m}{m1}.\dfrac{n.x2}{x2+1}\left(2\right)\)
thay \(x1=\dfrac{\Delta m}{m1}\)
vào trường hợp 2 ta có:\(n1=\left(1-x1\right).n+\dfrac{x1.x2.n}{x2+1}\)
theo giả thiết ta có:\(n1=k.n2\)
hay \(\left(1-x1\right).n+\dfrac{x1.x2.n}{x2+1}=k.\dfrac{n.x2}{x2+1}\)
\(1-x1=\dfrac{\left(k-x1\right).x2}{x2+1}\)
suy ra độ chênh lệch giữa hai cốc:\(k=\dfrac{\left(1-x1\right).\left(1+x2\right)}{x2}+x1=\dfrac{1+x2-x1-x1x2}{x2}+x1=\dfrac{1-x1}{x2}+1\left(3\right)\)
\(< =>\dfrac{1-x1}{x2}=k-1=2,5-1=1,5< =>1=1,5x2+x1\left(4\right)\)
khi đổ nước có khối lượng m từ bình 1 sang bình 2 ta có phương trình cân bằng nhiệt
m.c(t1-t)=m2.c(t-t2)
\(t=\dfrac{\Delta m.c.t1+m2.c.t2}{\Delta m.c+m2.c}=\dfrac{\Delta m.t1+m2.t2}{\Delta m+m2}\)
thêm bớt m2t1 vào tử ta có
\(t=\dfrac{\Delta m.t1+m2.t1+m2.t2-m2.t1}{\Delta m+m2}=t1+\dfrac{m2.\left(t2-t1\right)}{\Delta m+m2}=t1+\dfrac{t2-t1}{x2+1}=t1-\dfrac{t2-t1}{x2+1}\left(6\right)\)
khi đổ m trở lại cốc 1 ta có phương trình cân bằng nhiệt sau
m.c(t'-t)=(m1-m).c(t1-t')
\(=>t'=\dfrac{\Delta m.c.t+\left(m1-\Delta m\right)c.t1}{\Delta m.c\left(m1-\Delta m\right)c}=\dfrac{\Delta m.t+\left(m1-\Delta m\right).t1}{m1}< =>t'=x1.t+t1-x1.t1=x1\left(t-t1\right)+t1\)
thay vào trường hợp 6 ta có:\(t'=\left(t1-\dfrac{t1-t2}{x2+1}\right).x1+t1=t1-\dfrac{x1.\left(t1-t2\right)}{x2+1}\left(< >\right)\)
hiệu nhiệt độ giữa hai cốc
\(t=t'-t=t1-\dfrac{x1.\left(t1-t2\right)}{x2+1}-t1-\dfrac{t1-t2}{x2+1}=\dfrac{t1-t2-x1.\left(t1-t2\right)}{x2+1}=\dfrac{\left(1-x1\right).\left(t1-t2\right)}{x2+1}\left(\backslash\right)\)
thay t1,t2,t vào (/) ta có \(15=\dfrac{\left(1-x1\right).\left(45-5\right)}{x2+1}=>15x2+40x1=25\left(\backslash\backslash\right)\)
giải hệ phương trình từ (4) và (\\) ta có: ta được x1=\(\dfrac{1}{2}\)
x2=\(\dfrac{1}{3}\)
ta thấy khi m tăng thì \(x1=\dfrac{\Delta m}{m1}\)
x2=\(\dfrac{\Delta m}{m2}\)
đều tăng ,do đó từ phần (3) và (//) ta có k và t đều giảm
Ta có: \(V_1=200cm^3\Rightarrow m_1=0,2kg,t_1=40^oC\)
\(V_2=800cm^3\Rightarrow m_2=0,8kg,t_2=90^oC\)
Nhiệt độ phòng chính là nhiệt độ cân bằng: \(t=20^oC\)
Nhiệt dung riêng của nước: \(c=4200\)
Nhiệt lượng thu vào của cốc nước ấm \(200cm^3\) là:
\(Q_1=m_1c\left(t_1-t\right)=0,2\cdot4200\cdot\left(40-20\right)=16800J\)
Nhiệt lượng thu vào của cốc nước ấm \(800cm^3\) là:
\(Q_2=m_2c\left(t_2-t\right)=0,8\cdot4200\cdot\left(90-20\right)=235200J\)
Cân bằng nhiệt ta đc:
\(Q_{tỏa}=Q_1+Q_2=252000\)
Nhiệt lượng nước đun sôi tỏa ra:
\(Q_{tỏa}=Q_3=m_3\cdot c\cdot\left(100-20\right)=252000J\)
\(\Rightarrow m_3=0,75kg\)
\(\Rightarrow V_3=750cm^3\)
Nếu đề bài cho nhiệt dung riêng của nước là 4200 J/kgK; nhiệt dung riêng của nước đá là 2100J/kgK thì nhiệt độ cân bằng là 33,270C
Mình ngĩ vậy