K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: góc DMB+góc DHB=180 độ

=>DMBH nội tiếp

2: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC

góc AMD+góc AND=180 độ

=>AMDN nội tiếp

=>góc ANM=góc ADM=góc ABH

=>góc ANM=góc xAC

=>Ax//MN

Bài 1: 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:

\(AF\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

chị làm hết cho em được không ạ?

 

bài 1: 

\(\left\{{}\begin{matrix}x+y=57\\4x-2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+4y=228\\4x-2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6y=234\\x+y=57\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=39\\x=18\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 6 2021

1.

$(m^2-m-1)x-5m=(3-m)x$

$\Leftrightarrow (m^2-m-1+m-3)x=5m$

$\Leftrightarrow (m^2-4)x=5m$

$\Leftrightarrow (m-2)(m+2)x=5m$

Nếu $m=-2$ thì $0x=-10$ (vô lý) $\Rightarrow$ pt vô nghiệm

Nếu $m=2$ thì $0x=10$ (vô lý) $\Rightarrow$ pt vô nghiệm

Nếu $m\neq \pm 2$ thì pt có nghiệm duy nhất $x=\frac{5m}{(m-2)(m+2)}$

 

AH
Akai Haruma
Giáo viên
29 tháng 6 2021

2. 

$m^2x+mx+x-m-2=0$

$\Leftrightarrow x(m^2+m+1)=m+2$

Vì $m^2+m+1=(m+\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0$ với mọi $m\in\mathbb{R}$

$\Rightarrow m^2+m+1\neq 0$

Do đó pt có nghiệm duy nhất $x=\frac{m+2}{m^2+m+1}$ với mọi $m\in\mathbb{R}$

30 tháng 6 2021

Với \(n>0;n\in N:\dfrac{1}{n\sqrt{n+4}+\left(n+4\right)\sqrt{n}}=\dfrac{1}{\sqrt{n\left(n+4\right)}\left(\sqrt{n}+\sqrt{n+4}\right)}=\dfrac{\sqrt{n+4}-\sqrt{n}}{\sqrt{n\left(n+4\right)}\left(n+4-n\right)}=\dfrac{1}{4}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+4}}\right)\) (1)

Áp dụng (1) ta được:

 \(\dfrac{1}{1\sqrt{5}+5\sqrt{1}}+\dfrac{1}{5\sqrt{9}+9\sqrt{5}}+...+\dfrac{1}{2013\sqrt{2017}+2017\sqrt{2013}}\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{5}}-\dfrac{1}{\sqrt{9}}+...+\dfrac{1}{\sqrt{2013}}-\dfrac{1}{\sqrt{2017}}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{\sqrt{2017}}\right)=\dfrac{\sqrt{2017}-1}{4\sqrt{2017}}=\dfrac{2017-\sqrt{2017}}{8068}\)

Ý A

30 tháng 6 2021

em cảm ơn ạ

 

NV
2 tháng 4 2023

\(\Delta=9-4\left(1-m\right)=4m+5\)

Pt có 2 nghiệm khi: \(4m+5\ge0\Rightarrow m\ge-\dfrac{5}{4}\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=1-m\end{matrix}\right.\)

\(x_1^2+x_2^2=17\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=17\)

\(\Leftrightarrow9-2\left(1-m\right)=17\)

\(\Leftrightarrow2m=10\)

\(\Rightarrow m=5\) (thỏa mãn)

NV
31 tháng 3 2023

Do (d) đi qua E và G nên thay tọa độ E và G vào pt (d) ta được:

\(\left\{{}\begin{matrix}a.1+b=-3\\a.\left(-2\right)+b=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\-2a+b=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a=-9\\-2a+b=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=0\end{matrix}\right.\)

Vậy pt (d) là: \(y=-3x\)

a) Ta có: \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(a+2\sqrt{a}+1\right)\cdot\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)

\(=1\)

b) Ta có: \(\dfrac{a+b}{b^2}\cdot\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}\)

\(=\dfrac{a+b}{b^2}\cdot\dfrac{\left|a\right|\cdot b^2}{a+b}\)

=|a|