K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2023

a. Em tự giải

b.

Do tứ giác BDHM nội tiếp \(\Rightarrow\widehat{HDM}=\widehat{HBM}\) (cùng chắn cung HM)

Do tứ giác ABDE nội tiếp \(\Rightarrow\widehat{HBM}=\widehat{ADE}\) (cùng chắn cung AE)

\(\Rightarrow\widehat{HDM}=\widehat{ADE}\)

\(\Rightarrow DH\) là phân giác trong góc \(\widehat{EDK}\) của tam giác EDK

Lại có \(DH\perp DB\) (góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow DB\) là phân giác ngoài góc \(\widehat{EDK}\) của tam giác EDK

Áp dụng định lý phân giác:

\(\dfrac{EH}{HK}=\dfrac{EB}{BK}=\dfrac{ED}{DK}\) \(\Rightarrow BK.HE=BE.HK\)

c.

Hai điểm D và E cùng nhìn CH dưới 1 góc vuông nên tứ giác CDHE nội tiếp đường tròn đường kính CH

\(\Rightarrow I\) là trung điểm CH

Trong tam giác ABC, do hai đường cao AD và BE cắt nhau tại H \(\Rightarrow H\) là trực tâm

\(\Rightarrow CH\perp AB\) hay C;H;M thẳng hàng

Ta có \(IC=IE\) (do I là tâm đường tròn ngoại tiếp CDE) \(\Rightarrow\Delta CIE\) cân tại I

\(\Rightarrow\widehat{ECI}=\widehat{CEI}\)

Lại có \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O \(\Rightarrow\widehat{OBE}=\widehat{OEB}\)

Mà \(\widehat{OBE}=\widehat{ECI}\) (cùng phụ \(\widehat{BAC}\))

\(\Rightarrow\widehat{CEI}=\widehat{OEB}\)

\(\Rightarrow\widehat{CEI}+\widehat{IEB}=\widehat{OEB}+\widehat{IEB}\)

\(\Rightarrow\widehat{CEB}=\widehat{OEI}\)

\(\Rightarrow\widehat{OEI}=90^{ }\)

Hay \(OE\perp IE\Rightarrow IE\) là tiếp tuyến của đường tròn tâm O

NV
2 tháng 4 2023

loading...

13 tháng 2 2017

hình( tự vẽ)

a) Chú ý: \(\widehat{AEB}=\widehat{AFB}=90\)(góc chắn nửa đường tròn) => H là trực tâm tam giác ABC

=> tứ giác AIFC nội tiếp (do \(\widehat{AIC}=\widehat{AFC}=90\)) => góc CIF= góc CAF

mà góc CAF=\(\frac{1}{2}\)góc EOF

mà EF=R => tam giác OEF đều => EOF =60 => CIF=30

b)

tam giác vuông AIC đồng dạng với tam giác vuông AEB (g-g)

=> AE.AC=AI.AB

Tương tự tam giác BIC đồng dạng BFA

=> BF.BC=BI.AB

Vậy: AE.AC+BF.BC=AB(AI+IB)=AB\(^2\)=4R\(^2\)=const (ĐPCM)

14 tháng 2 2017

Sorry , mk ms học lớp 6 ... 
Have a nice day !!!

14 tháng 7 2019

A B O C D M E F K I N L

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA 

Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

a) xét (o) có:

góc AEB=90 độ( góc nt chắn nửa đt)⇒góc BEK=90 độ

góc AFB=90 độ( góc nt chắn nửa đt)⇒góc AFK=90 độ

Xét tứ giác KEFH có:

góc BEK=90 độ

góc AFK=90 độ

⇒góc BEK +góc AFK=180 độ

⇒tứ giác KEFH nt ( tứ giác có tổng 2 góc đối= 180 độ)

a: góc EHB+góc EDB=180 độ

=>BDHE nội tiếp

b: Xét ΔACE và ΔADC có

góc ACE=góc ADC

góc CAE chung

=>ΔACE đồng dạng với ΔADC

=>AC^2=AE*AD