Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc APB=góc AQB=1/2*180=90 độ
=>AQ vuông góc BC, BP vuông góc CA
góc CPH+góc CQH=180 độ
=>CPHQ nội tiếp
Do I là trực tâm của tam giác KAB nên K, I, H thẳng hàng.
Tứ giác AMIH nội tiếp nên \(\widehat{MHI}=\widehat{MAI}\).
Tương tự, \(\widehat{NHI}=\widehat{NBI}\).
Lại có \(\widehat{MAI}=\widehat{NBI}=90^o-\widehat{AKB}\) nên \(\widehat{MHI}=\widehat{NHI}\).
Vậy HK là phân giác của góc MHN.
a. Ta có: \(\widehat{ADB}=90^o\)(góc nội tiếp chắn nửa đường tròn) => \(\widehat{ADE}=90^o\)
Lại có: \(CH\perp AB\)tại H (gt) mà E \(\in CH\)(do E là giao điểm của BD và CH (gt)) => \(\widehat{EHA}=90^o\)
Xét tứ giác ADEH có: \(\widehat{ADE}+\widehat{EHA}=90^o+90^o=180^o\)=> tứ giác ADEH nội tiếp (DHNB) => đpcm
b.
Ta có: \(\widehat{ACB}=90^o\)(góc nội tiếp chắn nữa đường tròn) => \(\Delta ABC\)vuông tại C
=> \(S\Delta ABC=\frac{1}{2}AC\times BC=\frac{1}{2}CH\times AB\)=> CH = \(\frac{AC\times BC}{AB}\)
=> \(AC\times AH+CB\times CH=AC\times AH+CB\times\frac{AC\times BC}{AB}\)= \(AC\times(AH+\frac{BC^2}{AB})=AC\times\frac{(AH\times AB+BC^2)}{AB}\)(1)
Áp dụng hệ thức lượng trong \(\Delta ABC\)vuông tại C với đường cao CH ta được: AH \(\times AB=AC^2\)(2)
Áp dụng định lý pitago trong \(\Delta ABC\)vuông tại C ta được: \(AC^2+BC^2=AB^2\)(3)
Thế (2) và (3) vào (1) ta được : \(AC\times AH+CB\times CH=AB\times AC\)(ĐPCM)
c. Gọi K là điểm chính giữa cung AB (K nằm cùng phía với C so với bờ AB) => K là điểm cố định và \(KO\perp AB\)tại O => KO // CH => \(\widehat{KOC}=\widehat{KOM}=\widehat{HCO}\)(So le trong)
Nối K với M
Xét \(\Delta KOM\)và \(\Delta OCH\)có:
+ KO = OC = R
+ \(\widehat{KOM}=\widehat{HCO}\)(cmt)
+ OM = CH (gt)
=> \(\Delta KOM=\Delta OCH\)(c.g.c) => \(\widehat{KMO}=\widehat{OHC}=90^o\Rightarrow\Delta KOM\)vuông tại M => M \(\in(I,\frac{OK}{2})\)cố định (trong đó I là trung điểm của OK)
a) Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn \(\stackrel\frown{AB}\)
\(\stackrel\frown{AB}\) là nửa đường tròn(AB là đường kính của (O))
Do đó: \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)
⇔BC⊥AC tại C
⇔BC⊥AF tại C
⇔\(\widehat{BCF}=90^0\)
⇔\(\widehat{ECF}=90^0\)
Xét (O) có
\(\widehat{ADB}\) là góc nội tiếp chắn \(\stackrel\frown{AB}\)
\(\stackrel\frown{AB}\) là nửa đường tròn(AB là đường kính của (O))
Do đó: \(\widehat{ADB}=90^0\)(Hệ quả góc nội tiếp)
⇔AD⊥BD tại D
⇔AD⊥BF tại D
⇔\(\widehat{ADF}=90^0\)
⇔\(\widehat{EDF}=90^0\)
Xét tứ giác CEDF có
\(\widehat{FCE}\) và \(\widehat{FDE}\) là hai góc đối
\(\widehat{FCE}+\widehat{FDE}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: CEDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
⇔C,E,D,F cùng nằm trên một đường tròn(đpcm)