K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 11 2019

Đề bài sai bạn, vế trái là 1 cặp tọa độ, bên phải là độ dài, làm sao bằng nhau được?

5 tháng 12 2019

tích vô hướng 2 vectơ \(\overrightarrow{a}^2=a^2\)

Câu 2:

\(\overrightarrow{BK}=\left(x-5;6\right)\)

\(\overrightarrow{KA}=\left(3-x;-3\right)\)

\(KA=\sqrt{\left(3-x\right)^2+\left(-1-y\right)^2}=\sqrt{\left(x-3\right)^2+9}\)

\(AC=\sqrt{\left(6-3\right)^2+\left(1+1\right)^2}=\sqrt{13}\)

\(\overrightarrow{BK}\cdot\overrightarrow{KA}=KA^2+AC^2\)

\(\Leftrightarrow\left(x-5\right)\cdot\left(3-x\right)+6\cdot\left(-3\right)=\left(x-3\right)^2+9-13\)

=>x^2-6x+9-4=3x-x^2-15+5x-18

=>x^2-6x+5=-x^2+8x-23

=>2x^2-13x+28=0

hay \(x\in\varnothing\)

26 tháng 1 2021

Gọi G là trọng tâm tam giác ABC

\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1}{3};y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{1}{3}\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) nhỏ nhất khi \(3MG\) nhỏ nhất

\(\Leftrightarrow M\) là hình chiếu của \(G\) trên trục tung

\(\Leftrightarrow M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\le3MG=1\)

Đẳng thức xảy ra khi \(M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\) Tung độ \(y_M=\dfrac{1}{3}\)

6 tháng 12 2021

a, \(\overrightarrow{BA}=\left(0-4;-2-1\right)\)

           =\(\left(-4;-3\right)\)

6 tháng 12 2021

có bt lm câu b ko bnthanghoa

(1) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(1;-4\right)\), \(\overrightarrow{b}=\left(0;2\right)\). tọa độ của vecto \(\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}\) là?(2) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(-7;3\right)\), \(\overrightarrow{b}=\left(4;1\right)\). tọa độ của vecto \(\overrightarrow{u}=\overrightarrow{b}-2\overrightarrow{a}\) là?(3) trong mặt phẳng tọa độ Oxy, cho hai...
Đọc tiếp

(1) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(1;-4\right)\)\(\overrightarrow{b}=\left(0;2\right)\). tọa độ của vecto \(\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}\) là?

(2) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(-7;3\right)\)\(\overrightarrow{b}=\left(4;1\right)\)tọa độ của vecto \(\overrightarrow{u}=\overrightarrow{b}-2\overrightarrow{a}\) là?

(3) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{u}=\left(-5;4\right)\)\(\overrightarrow{v}=-3\overrightarrow{j}\). tọa độ của vecto \(\overrightarrow{a}=2\overrightarrow{u}-5\overrightarrow{v}\) là?

(4) trong mặt phẳng tọa độ Oxy, cho hai điểm A (1;1), B (4;-7) và \(\overrightarrow{OM}=2\overrightarrow{OA}-5\overrightarrow{OB}\). tổng hoành độ và tung độ của điểm M là?

giúp mk vs ạ mk cần gấp thank

1

(1); vecto u=2*vecto a-vecto b

=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)

(2): vecto u=-2*vecto a+vecto b

=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)

(3): vecto a=2*vecto u-5*vecto v

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)

(4): vecto OM=(x;y)

2 vecto OA-5 vecto OB=(-18;37)

=>x=-18; y=37

=>x+y=19

NV
14 tháng 11 2021

Do E thuộc Ox nên tọa độ có dạng: \(E\left(x;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{EM}=\left(1-x;-2\right)\\\overrightarrow{EN}=\left(3-x;2\right)\\\overrightarrow{EP}=\left(5-x;-1\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{EM}+\overrightarrow{EN}+\overrightarrow{EP}=\left(9-3x;-1\right)\)

\(\Rightarrow\left|\overrightarrow{EM}+\overrightarrow{EN}+\overrightarrow{EP}\right|=\sqrt{\left(9-3x\right)^2+\left(-1\right)^2}\ge1\)

Dấu "=" xảy ra khi \(9-3x=0\Rightarrow x=3\Rightarrow E\left(3;0\right)\)