K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔADB và ΔAEC có

AB=AC

góc B=góc C

BD=CE

=>ΔADB=ΔAEC

=>góc BAD=góc CAE

4 tháng 3 2018

Bạn tìm câu hỏi tương tự thì nó có bạn nhé

ngại gõ quá :)

24 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath

24 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath

18 tháng 3 2021

Xét ∆ABD và ∆ACE có: AB = AC (∆ABC cân tại A)

ABDˆ=ACEˆABD^=ACE^ (∆ABC cân tại A)

BD = EC (gt)

Do đó ∆ABD = ∆ACE (c.g.c) ⇒BADˆ=EACˆ⇒BAD^=EAC^

Ta có AEBˆ>Cˆ(AEBˆAEB^>C^(AEB^ là góc ngoài của tam giác ACD)

Cˆ=BˆC^=B^ (∆ABC cân tại A)

Nên AEBˆ>BˆAEB^>B^

∆ABE có AEBˆ>BˆAEB^>B^ => AB > AE

Trên tia đối của tia DA lấy điểm M sao cho DM = DA

Xét ∆DME và ∆DAB có DM = DA, MDEˆ=ADBˆMDE^=ADB^ (đối đỉnh), DE = BD (gt)

Do đó ∆DME = ∆DAB (c.g.c) ⇒ME=AB,DMEˆ=BADˆ⇒ME=AB,DME^=BAD^

Ta có ME > AE. ∆AEM có ME > AE ⇒DAEˆ>DMEˆ⇒DAE^>DME^

Nên DAEˆ>BADˆ=EACˆ.DAE^>BAD^=EAC^.

Vậy trong ba góc BAD, DAE, EAC thì góc DAE lớn nhất.

=>góc DAE là góc lớn nhất