Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứu tôi vs , tôi sắp chết nếu như ko ai giải cho tôi câu này
\(\frac{22}{1\cdot3}\cdot\frac{32}{2\cdot4}\cdot\frac{42}{3\cdot5}\cdot...\cdot\frac{992}{98\cdot100}\)
Mk vt lại đề nè bn xem có đúng ko
Tính: 22 phần 1.3 . 32 phần 2.4 . 42 phần 3.5 ...... 992 phần 98.100 = 22 phần 1.3 . 32 phần 2.4 . 42 phần 3.5 ...... 992 phần 98.100
\(B=\left(1+\frac{1}{1.3}\right)+\left(1+\frac{1}{2.4}\right)+\left(1+\frac{1}{3.5}\right)+...+\left(1+\frac{1}{98.100}\right)\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{98.100}\right)\)( 98 số 1 ở tồng đầu tiên)
\(=98+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.101}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=98+\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{3}{97.101}\right)+\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\right)\)
\(=98+\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+..+\frac{1}{98}-\frac{1}{100}\right)\)\(=98+\frac{1}{2}.\left(1-\frac{1}{101}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=98+\frac{1}{2}.\frac{100}{101}+\frac{1}{2}.\frac{49}{100}\)
\(=98+\frac{51}{101}+\frac{49}{200}\)
Suy ra phàn nguyên của B là 98.
Vậy phân fnguyên của B là 98.
mình nhầm. bạn thay các chỗ có "97.101" thành "99.101" nhé!
Xét : \(\frac{x^2}{\left(x-1\right)\left(x+1\right)}=\frac{x^2}{x^2-1}=\frac{x^2-1+1}{x^2-1}=1+\frac{1}{x^2-1}\)
=> \(\left[\frac{x^2}{x^2-1}\right]=1\) vì \(0< \frac{1}{x^2-1}< 1\)
Do đó : \(\left[D\right]=1.98=98\)
\(B=\dfrac{2^2}{1\cdot3}+\dfrac{3^2}{2\cdot4}+\dfrac{4^2}{3\cdot5}+...+\dfrac{99^2}{98\cdot100}\\ =\dfrac{1\cdot3+1}{1\cdot3}+\dfrac{2\cdot4+1}{2\cdot4}+\dfrac{3\cdot5+1}{3\cdot5}+...+\dfrac{98\cdot100+1}{98\cdot100}\\ =\dfrac{1\cdot3}{1\cdot3}+\dfrac{1}{1\cdot3}+\dfrac{2\cdot4}{2\cdot4}+\dfrac{1}{2\cdot4}+\dfrac{3\cdot5}{3\cdot5}+\dfrac{1}{3\cdot5}+...+\dfrac{98\cdot100}{98\cdot100}+\dfrac{1}{98\cdot100}\\ =1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{2\cdot4}+1+\dfrac{1}{3\cdot5}+...+1+\dfrac{1}{98\cdot100}\\ =\left(1+1+1+...+1\right)+\left(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\right)\\ =98+\left(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\right)\\ \)Gọi \(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\) là A
\(A=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\\ =\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{98\cdot100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{3}{2}-\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{295}{198}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\dfrac{14651}{9900}=\dfrac{14651}{19800}\)
\(B=98+A=98+\dfrac{14651}{19800}=98\dfrac{14651}{19800}\)
Dễ thấy phần nguyên của B là 98
Vậy phần nguyên của B là 98
Đề sai nhá dãy số lẻ ko thể kết thúc bằng số chẵn đc :
Đề này nhá \(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+.....+\frac{4}{99.101}\)
\(\Rightarrow A=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{101}\right)\)
\(\Rightarrow A=2.\frac{100}{101}=\frac{200}{101}\)
\(A=\frac{4}{1.3}+\frac{4}{3.5}+....+\frac{4}{98.100}\)
\(A=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.........+\frac{2}{98.100}\right)\)
\(A=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{98}-\frac{1}{100}\right)\)
\(A=2.\left(1-\frac{1}{100}\right)\)
\(A=2.\frac{99}{100}\)
\(A=\frac{99}{50}\)
= 1.( 2 + 1 ) + 2 ( 3 + 1 ) + 3( 4 + 1 ) + ..... + 98( 99 + 1 )
= 1 . 2 + 1 + 2 . 3 + 2 + 3 . 4 + 3 + ...... 98 . 99 + 98
= ( 1 . 2 + 2 . 3 + 3 . 4 + ..... + 98 . 99 ) + ( 1 + 2 + 3 + ..... + 98 )
= 323400 + 4851
= 328351