Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(3^3+3^4)+(3^5+3^6)+...+(3^15+3^16) = 3^3(1+3)+3^5(1+3) +..+3^15(1+3)= 3^3.4+3^5.4+..+3^15.4 =4.(3^3+3^5+..+3^15)
=> Ạ chia hết cho 4
A=3^3+3^4+3^5+...+3^14+3^15+3^16
A=(3^3+3^4)+(3^5+3^6)+...+(3^15+3^16)
A=3^3(1+3)+3^5(1+3)+...+3^15(1+3)
A=3^3.4+3^5.4+...+3^15.4
A=(3^3+3^5+...+3^15)4
=>A chia hết cho 4
Vậy A=3^3+3^4+3^5+...+3^14+3^15+3^16 chia hết cho 4
M=33.(1+3)+35.(1+3)+........+315.(1+3)
M=4.(33+35+..............+315)
M có thừa số 4 suy ra M chia hết cho 4
Đặt \(A=3+3^2+3^3+...+3^{15}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{13}+3^{14}+3^{15}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{13}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{13}.13\)
Vì \(13⋮13\)nên \(3.13+3^4.13+...+3^{13}.13⋮13\)
hay \(A⋮13\)
Vậy \(A⋮13.\)
A=3+3^2+3^3+......+3^13+3^14+3^15
=(3+3^2+3^3)+......+(3^13+3^14+3^15)
=3(1+3+3^2)+.......+3^13(1+3+3^2)
=(3+....+3^13)+(1+3+3^2)
=13(3+.....+3^13) chia hết cho 13
a,Từ 1 đến 1000 có bao nhiêu số chia hết cho 5
b,Tổng 10^15 + 8 có chia hết cho 9 và 2 không
c,Tổng 10^2015 + 8 có chia hết cho 9 không
d,Tổng 10^2015+ 14 có chia hết cho 3 và 2 không
e,Hiệu 10^2015 - 4 có chia hết cho 3 không
a) Từ 1 đến 1000 có 200 số chia hết cho 5.
b) Tổng 10^15+8 ko chia hết cho 9 có chia hết cho 2.
c) Tổng 10^2010+8 ko chia hết cho 9.
d) Tổng 10^2010+14 chia hết cho 3 và 2.
e) Hiệu 10^2010-4 có chia hết cho 3.
Đúng thì tk nha bn.
Bạn dựa vào công thức:
(số cuối - số đầu) : (khoảng cách) + 1
a) Số lớn nhất 1000
Số bé nhất 5
Khoảng cách 5
=> Có: (1000 - 5)/5 + 1 = 200 (số)
Ta có :
\(M=3^3+3^4+.....+3^{15}+3^{16}\)
\(\Rightarrow M=3^3\left(1+3\right)+......+3^{15}\left(1+3\right)\)
\(\Rightarrow M=3^3.4+......+3^{15}.4\)
=> M chia hết cho 4 .
\(M=\left(3^3+3^5\right)+....+\left(3^{14}+3^{16}\right)\)
\(\Rightarrow M=3^3\left(1+9\right)+.....+3^{14}\left(1+9\right)\)
\(\Rightarrow M=3^3.10+.....+3^{14}.10\)
=> M chia hết cho 10