Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tỉ số giữa số thứ 3 và số thứ nhất là:
\(\frac{1}{2}.\frac{1}{2}=\frac{1}{4}\)
Gọi 3 số lần lượt là: x ; \(\frac{1}{2}x\); \(\frac{1}{4}x\)
Ta có:
x + \(\frac{1}{2}x+\frac{1}{4}x=-84\)
\(\Rightarrow1x+\frac{1}{2}x+\frac{1}{4}x=-84\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{4}\right)x=-84\)
\(\Rightarrow\left(\frac{4}{4}+\frac{2}{4}+\frac{1}{4}\right)x=-84\)
\(\Rightarrow\frac{7}{4}x=-84\)
\(\Rightarrow x=\left(-84\right):\frac{7}{4}\)
\(\Rightarrow x=-48\)
Vậy số thứ nhất là: -48
Số thứ 2 là:
(-48) . \(\frac{1}{2}=-24\)
Số thứ 3 là:
(-48) . \(\frac{1}{4}=-12\)
Đ/S: Số thứ nhất: -48
Số thứ hai: -24
Số thứ ba: -12
Gọi số thứ nhất là a; số thứ hai là b ; số thứ ba là c . Ta có :
\(\hept{\begin{cases}\frac{a}{b}=\frac{1}{2}\\\frac{b}{c}=\frac{1}{2}\\a+b+c=-84\end{cases}}\)\(\Rightarrow\)\(a=2x\)và \(b=2y=4x\)
Vì \(x+2x+4x=-84\)
Nên \(\Rightarrow\hept{\begin{cases}a=-12\\b=2x=-24\\c=4x=-48\end{cases}}\)
Vậy số thứ nhất = -12 ; số thứ hai = -24 và số thứ ba bằng -48
Gọi các số đó lần lượt là a ; b ; c. Ta có:
\(\hept{\begin{cases}\frac{a}{b}=\frac{1}{2}\\\frac{b}{c}=\frac{1}{2}\\a+b+c=-84\end{cases}}\)
= > a = 2x và b = 2y = 4x
Vì x + 2x = 4x = - 84
Nên = >\(\hept{\begin{cases}a=-12\\b=2x=-24\\c=4x=-48\end{cases}}\)
Vậy...............
Theo đề ta có:
Tổng 3 số bằng :
a + b + c = -84 (1)
Tỉ số giữa số thứ nhất và số thứ hai bằng 1/2 và tỉ số giữa số thứ hai và số thứ ba cũng bằng 1/2
=> a/b = b/c = 1/2 (2)
Từ (1) và (2) giải hệ ta có
a = -12 ; b= -24 ; c = -48
Gọi ba số thỏa mãn đề bài là: \(x\); y; z
Theo bài ra ta có:
\(x+y+z\) = -84 (1)
\(\dfrac{x}{y}\) = \(\dfrac{1}{2}\) ⇒ \(x\) = \(\dfrac{1}{2}y\); \(\dfrac{y}{z}\) = \(\dfrac{1}{2}\) ⇒ \(z\) = 2\(y\)
thay \(x\) = \(\dfrac{1}{2}y\) và z = 2y vào biểu thức (1) ta có:
\(\dfrac{1}{2}\)y + y + 2y = -84 ⇒ \(\dfrac{7}{2}y\) = -84⇒ y = -84: \(\dfrac{7}{2}\) = -24; \(x\) =-24 \(\times\) \(\dfrac{1}{2}\) = -12
z = -24 \(\times\) 2 = -48
Kết luận: (\(x\);y;z) =(-12; -24; -48)
Gọi 3 số đó lần lượt là a,b,c
Theo đề ta có:
Tổng 3 số bằng -84
\(\Rightarrow a+b+c=-84\left(1\right)\)
Tỉ số giữa số thứ nhất và số thứ hai bằng 1/2 và tỉ số giữa số thứ hai và số thứ ba cũng bằng 1/2
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{1}{2}\left(2\right)\)
Từ (1) và (2) ta có hệ \(\begin{cases}a+b+c=-84\left(1\right)\\\frac{a}{b}=\frac{b}{c}=\frac{1}{2}\end{cases}\)\(\Leftrightarrow\begin{cases}a=-12\\b=-24\\c=-48\end{cases}\left(tm\right)\)
GỌi số thứ nhất là x;số thứ 2 là y;số thứ 3 là z
Theo bài ra ta có:
\(x+y+z=84\)
\(\frac{y}{z}=\frac{1}{2}\Rightarrow y=\frac{z}{2}\)(1)
\(\frac{x}{y}=\frac{1}{2}\Rightarrow2x=y\)(2)
Từ (1)và (2)=>\(2x=y=\frac{z}{2}\Rightarrow x=\frac{y}{2}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ;ta được:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{x+y+z}{1+2+4}=\frac{84}{7}=12\)
\(\Rightarrow\hept{\begin{cases}x=12\\y=12.2=24\\z=12.4=48\end{cases}}\)
Vậy 3 số cần tìm là:12;24;48
Gọi số thứ nhất là a
=> Số thứ hai là 3/2a
Số thứ 3 là 9/4a
Vì tổng các luỹ thừa bậc 3 của 3 số nguyên là -1009, nên ta có:
\(a^3+\left(\dfrac{3}{2}a\right)^3+\left(\dfrac{9}{4}a\right)^3=-1009\\ \Leftrightarrow a^3+\dfrac{27}{8}a^3+\dfrac{729}{64}a^3=-1009\\ \Leftrightarrow\dfrac{1009}{64}a^3=-1009\\ \Leftrightarrow\dfrac{a^3}{64}=-1\\ \Leftrightarrow\left(\dfrac{a}{4}\right)^3=\left(-1\right)^3=-1\\ \Leftrightarrow\dfrac{a}{4}=-1\\ \Leftrightarrow a=-4\)
Vậy số thứ nhất là 4, số thứ hai là 6 và số thứ ba là 9.
Gọi số thứ nhất , số thứ hai , số thứ ba là a,b ,c .
Ta có:
a+b+c = -1009
a: b= 2/3 => a /2 = b/3 => a/4 = b/6 [1]
a : c= 4/9 => a/4 = c/9 [2]
Từ [1] , [2] => a/4 = b/6 = c/9 =[a+b+c] /[4+6+9] = -1009/19 [áp dụng tính chất dãy tỉ số bằng nhau]
=> a= -4036/19 ; b= -6054/19 ; c= -9081/19
Vậy .......
gọi ST1 là a, ST2 là b, ST3 là c. Ta có: a = 2/3 b; c = 6/5 b
=> 4/9 b2 + b2+ 6/5 b2 = 2596
649/225 b2 = 2596
=> b2 = 900
=> b =30
=> a = 30 .2/3 = 20
=> c = 30 .6/5 = 36
gọi số thứ nhất, thứ hai, thứ ba lần lượt là: a,b,c
Ta có: \(\frac{a}{b}=\frac{1}{2}\Rightarrow a=\frac{b}{2}\)
\(\frac{b}{c}=\frac{1}{2}\Rightarrow c=2b\)
mà a + b + c = -84
nên \(\frac{b}{2}+b+2b=-84\)
\(\frac{b}{2}+\frac{2b}{2}+\frac{4b}{2}=84\)
\(\frac{b+2b+4b}{2}=-84\Rightarrow\frac{7b}{2}=-84\)
do đó \(7b=-84\cdot2=-168\Rightarrow b=-168:7=-24\)
vậy \(a=\frac{b}{2}=\frac{-24}{2}=-12;c=2b=2\cdot\left(-24\right)=-48\)