Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
20162017 có chữ số tận ccùg là 6
Ta lại có 20174 có tận cùng là 1 nên (20174)504 co chữ số tận cùng là 1.
=> 20162017 + 20172016 có chữ số tận cùng là 7.
Mà không có số chính phương nào có tận cùng là 7 nên số đã cho không phải số chính phương
3.
x={0 ;1;2 ;3 ;4 ;5 ;6 ;7........................}
ƯC(100;500) =100
suy ra x =100
BC(10;25) =50
suy ra x =50
tick nha
Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)
Ta xét tổng của dãy trên:
\(n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+1973\right)^2\)
<=>\(\left[n^2+\left(n+1\right)^2+\left(n+3\right)^2\right]+....+\left[\left(n+1971\right)^2+\left(n+1972\right)^2+\left(n+1973\right)^2\right]\)
Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp
Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:
\(\left(3k_1+2\right)+\left(3k_2+2\right)+...+\left(3k_{658}+2\right)\)
= \(3.\left(k_1+k_2+k_3+...+k_{658}\right)+2.658\)
=\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+1316\)chia 3 dư 2
Mà một số chính phương khi chia 3 dư 0 hoac 1
Vậy tổng trên không thể là số chính phương
a) 13 + 23 = 1 + 8 = 9 = 32
b) 13 + 23 + 33 = 1 + 8 + 27 = 36 = 62
c) 13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102
\(a=3+3^2+3^3+.....+3^{2017}+3^{2018}\)
\(3a=3+3^2+3^3+......+3^{2019}\)
\(3a-a=\left(3+3^2+....+3^{2019}\right)-\left(3+3^2+....+3^{2018}\right)\)
\(a=3^{2019}\)
\(\Rightarrow3^{2019}=\left(3^3\right)^{673}\)
\(a=\left(....7\right)^{673}\)
\(\Rightarrow\)tận cùng là 7
Ta có 1! + 2! + 3! + 4! = 33
những giai thừa từ 5! trở lên đều có tận cùng là 0 (vì đều chia hết cho 10)
=> 1! + 2! + 3! + ... + 2017! có tận cùng là 3
Vì không có số chính phương nào có tận cùng là 3, nên 1! + 2! + 3! + 4! + ...+ 2017! không phải là số chính phương