K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2023

câu 2: 

a) Trước tiên ta chứng minh f đơn ánh. Thật vậy nếu f (n1) = f (n2) thì

f (f(n1) + m) = f (f(n2) + m)
→n1 + f(m + 2003) = n2 + f(m + 2003) → n1 = n2

b) Thay m = f(1) ta có

f (f(n) + f(1)) = n + f (f(1) + 2003)
= n + 1 + f(2003 + 2003)
= f (f(n + 1) + 2003)

Vì f đơn ánh nên f(n)+f(1) = f(n+1)+2003 hay f(n+1) = f(n)+f(1)−2003. Điều này dẫn đến
f(n + 1) − f(n) = f(1) − 2003, tức f(n) có dạng như một cấp số cộng, với công sai là f(1) − 2003,
số hạng đầu tiên là f(1). Vậy f(n) có dạng f(n) = f(1) + (n − 1) (f(1) − 2003), tức f(n) = an + b.
Thay vào quan hệ hàm ta được f(n) = n + 2003, ∀n ∈ Z
+.

22 tháng 5 2023

bạn ơi có thể ghi lại rõ hơn được không nhỉ mình nhìn hơi rối á

22 tháng 5 2023

 Bạn nhấn chữ "Đọc tiếp" ở ngay dưới câu hỏi chưa? Nếu bạn chưa nhấn thì nhấn đi, nó tự xuống dòng đó.

27 tháng 1 2021

\(f\left(20\right)=f\left(1\right)+f\left(19\right)+3\left(4.1.19-1\right)=f\left(19\right)+12.19-3\)

\(f\left(19\right)=f\left(18\right)+12.18-3\)

\(f\left(18\right)=f\left(17\right)+12.17-3\)

.....

\(f\left(3\right)=f\left(2\right)+12.2-3\)

\(f\left(2\right)=f\left(1\right)+12-3\)

Cộng vế theo vế các đẳng thức trên:

\(f\left(2\right)+f\left(3\right)+...+f\left(20\right)=f\left(1\right)+f\left(2\right)+...+f\left(19\right)+12\left(1+2+...+19\right)-3.20\)

\(\Leftrightarrow f\left(20\right)=2220\)

Đoạn này bạn tính kĩ một chút nha, mình tính không biết có sai không.

21 tháng 11 2019

Nguyễn Việt Lâm

21 tháng 11 2019

bổ sung đề

với f không giảm

tính f\(\left(\frac{1}{n}\right)\) với n∈\(\left\{1;2;3;....;20\right\}\)