K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử tồn tại các số nguyên dương x,y mà :

(x+y)(x-y)=2022 (1)

Không thể xảy ra trường hợp trong 2 số x và y có 1 số le và 1 số chẵn vì nếu xảy ra thì x+y va x-y đều là số lẻ nên tích (x+y)(x-y) là số lẻ trái với (1)

Vậy x,y phải cùng chẵn hoặc cùng lẻ . Khi đó tích x+y và x-y đều là số chẵn nên tích  (x+y)(x-y)  chia hết cho 4 mà 2022 lại không chia hết cho 4                 suy ra không tồn tại 2 số nguyên dương x và y

28 tháng 6 2015

a, không tồn tại chắc vậy

28 tháng 6 2015

a thì chắc không tồn tại rồi     

Còn b thì không biết

18 tháng 4 2019

Giả sử tồn tại ..

Ta có   (-1)^x+199y luôn = 1 hoặc -1 là số lẻ => 6+  (-1)^x+199y lẻ mà 2006 chẵn => (x+199y)(x-199y) chẵn => x+199y hoặc x-199y chia hết cho 2(1)

Lại có x+199y+x-199y=2x chẵn kết hợp (1) => x+199y và x-199y đều chia hết cho 2 => (-1) ^ x+199y =1 => 6+  (-1) ^ x+199y =7 

mà 2006 không chia hết cho 7 =>2006 o chia hết 6+  (-1) ^ x+199y (vô lý) 

Vậy giả sử sai nên o tồn tại

12 tháng 9 2017

\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x-y}\Leftrightarrow y-x=\frac{xy}{x-y}\Leftrightarrow2xy-y^2-x^2=xy\Leftrightarrow x^2-xy+y^2=0=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4};.\)\(>0\forall\)x,y dương=> ko tồn tại

14 tháng 9 2017

Cách khác__giả sử \(\frac{1}{x}-\frac{1}{y}=\frac{1}{x-y}\) thì \(\frac{y-x}{xy}=\frac{1}{x-y}\) suy ra \(\left(y-x\right)\cdot\left(x-y\right)=xy\)

Xét vế trái nhận GT âm, vì tích 2 số đối nhau khác 0__vế phải nhận GT dương vì tích 2 số dương  ....suy ra 2 vế ko bằng nhau

Vậy giả sử sai,  x,y ko tồn tại 

19 tháng 12 2021

\(x=y\in Z^+\)