K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

Đặt A = \(\sqrt{n}+\sqrt{n+4}\)

=> \(A^2=n+n+4+2\sqrt{n\left(n+4\right)}\) = \(2n+4+2\sqrt{n\left(n+4\right)}\)

Vì n nguyên dương nên 2n + 4 nguyên dương

Mặt khác n(n+4) >0 , không là số chính phương nên \(\sqrt{n\left(n+4\right)}\) , không phải số nguyên dương 

=> \(2\left(\sqrt{n\left(n+4\right)}\right)\) không phải số nguyên dương

=> A2 không phải số nguyên dương => A không phải số nguyên dương ( đpcm)

============================

29 tháng 5 2017

Các bạn giải nhanh nha! 

Ngày mai lúc 8h 30 (hoặc sớm hơn) mình sẽ chấm và đưa ra đáp án.

8 tháng 8 2016

Xét hiệu: \(\frac{7n-1}{4}-\frac{5n+3}{12}=\frac{3.\left(7n-1\right)}{12}-\frac{5n+3}{12}\)

                                                      \(=\frac{21n-3}{12}-\frac{5n+3}{12}\)

                                                      \(=\frac{\left(21n-3\right)-\left(5n+3\right)}{12}\)

                                                         \(=\frac{21n-3-5n-3}{12}\)

                                                           \(=\frac{16n-6}{12}\)

Do 16n chia hết cho 4; 6 không chia hết cho 4 => 16n - 6 không chia hết cho 4 => \(\frac{16n-6}{12}\)không là số tự nhiên

=> 7n - 1/4 và 5n + 3/12 không đồng thời là số tự nhiên với mọi số nguyên dương n (đpcm)

1 tháng 4 2023

n^2 -m nha. ko phải n-m đâu. so sorry

 

DD
27 tháng 11 2021

Giả sử \(n^2+2\)là số chính phương với số nguyên dương \(n\)nào đó. 

Khi đó tồn tại số nguyên dương \(m\)sao cho \(n^2+2=m^2\)

\(\Leftrightarrow m^2-n^2=2\Leftrightarrow\left(m-n\right)\left(m+n\right)=2=2.1\)

Mà \(m+n>m-n>0\)nên 

\(\hept{\begin{cases}m+n=2\\m-n=1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{3}{2}\\n=\frac{1}{2}\end{cases}}\)(loại) 

Do đó điều giả sử là sai.

Vậy ta có đpcm.