Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2011}.x=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2010}\right).\left(1-\frac{1}{2011}\right)\)
\(\frac{1}{2011}.x=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2009}{2010}.\frac{2010}{2011}\)
\(\frac{1}{2011}.x=\frac{1.2.3...2009.2010}{2.3.4...2010.2011}\)\(=\frac{1}{2011}\)
\(x=\frac{1}{2011}:\frac{1}{2011}=1\)
Vậy x=1
\(\frac{1}{2011}.x=\frac{1}{2}.\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)......\left(\frac{2010}{2011}\right)\)
\(\frac{1}{2011}.x=\frac{2}{4}.\left(\frac{4}{6}\right).\left(\frac{6}{8}\right).......\left(\frac{4018}{4020}\right).\left(\frac{4020}{4022}\right)\)
\(\frac{1}{2011}.x=\frac{2.4.6.8.....4018.4020}{4.6.8.10.....4020.4022}\)
\(\frac{1}{2011}.x=\frac{2}{4022}\)
\(\Rightarrow\)\(x=\frac{2}{4022}:\frac{1}{2011}=1\)
Ai thấy đún thì ủng hộ mink nha !!!
Thanks you very much !!
Chúc các bạn luôn học giỏi !!!
C=(1+2/3).(1+2/5).(1+2/7)......(1+2/2009).(1+2/2011)
C=5/3.7/5.9/7......2011/2009.2013/2011
C=5.7.9.....2013/3.5.7.....2009.2011
C=2013/3
B
từ 1 đến 2012 có tất cả:
2012-1:1+1 = 2012 (số)
=>có: 2012:2 = 1006 (cặp)
Mà mỗi cặp bằng (-1)nên
tổng dãy số trên là: 1006 . (-1) = -1006
(1-2)+(2-3)+(3-4)+(5-6)+...+(2011-2012)
=-1+(-1)+(-1)+(-1)+...+(-1)
có tất cả các số -1 trên dãy số trên là
(2012-2);2+1=1006
vậy suy ra ; -1x1006=(-1006)
chac chan la dung
\(M=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2011}-1\right)\)
\(M=-\frac{1}{2}.-\frac{2}{3}.-\frac{3}{4}...-\frac{2010}{2011}\)
\(M=-\frac{1}{2011}\)
\(\frac{1+2+...+n}{n}=\frac{n\left(n+1\right)}{2n}=\frac{n+1}{2}\)
\(\Rightarrow A=1+\frac{1}{2}\left(3+4+...+2012\right)\)
\(=1+\frac{1}{2}\left(1+2+...+2012-3\right)\)
\(=1+\frac{1}{2}\left(1+2+...+2012\right)-\frac{3}{2}\)
\(=\frac{1}{2}.\frac{2012.2013}{2}-\frac{1}{2}=503.2013-\frac{1}{2}=...\)
Suy ra : A = ( 1 - 1 / 2010 ) . ( 1 - 2 / 2010 ) .... 0 . ( 1 - 2011 / 2010 ) = 0
Suy ra A = 0
A = 1. ( 1/2010 + 2/2010 ) - ( 3/2010 + 4/2010 ) - ... - ( 2010/2010 + 2011/2010 )
= 1/2010 - 2011/2010
= -2010/2010
D= [(1-1/2)(1-1/3)...(1-1/25)]:[(1+1/2)(1+1/3)...(1+1/25)]
D= [1/2. 2/3. ... . 24/25]: [3/2. 4/3. ... . 26/25]
D= 1/25 : 2/26
D= 1/25 . 26/2= 13/25
Vậy D= 13/25
\(D=\left[\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{25}\right)\right]\)\(:\left[\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{25}\right)\right]\)
\(D=\left[\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{24}{25}\right]:\left[\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{26}{25}\right]\)
\(D=\frac{1.2.3...24}{2.3.4...25}:\frac{3.4.5...26}{2.3.4...25}\)
\(D=\frac{1}{25}:13\)
\(D=\frac{1}{325}\)
Số cuối có trừ 2 koe
\(M=\left[\frac{1}{2}-1\right]\cdot\left[\frac{1}{3}-1\right]\cdot\left[\frac{1}{4}-1\right]\cdot...\cdot\left[\frac{1}{2011}-1\right]\)
\(M=\left[\frac{1}{2}-\frac{2}{2}\right]\cdot\left[\frac{1}{3}-\frac{3}{3}\right]\cdot\left[\frac{1}{4}-\frac{4}{4}\right]\cdot...\cdot\left[\frac{1}{2011}-\frac{2011}{2011}\right]\)
\(M=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-2010}{2011}\)
\(M=\frac{\left[-1\right]\cdot\left[-2\right]\cdot\left[-3\right]\cdot...\cdot\left[-2010\right]}{2\cdot3\cdot4\cdot...\cdot2011}\)
\(M=\frac{1\cdot2\cdot3\cdot...\cdot2010}{2\cdot3\cdot4\cdot...\cdot2011}=\frac{1}{2011}\)