K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2023

`a,\sqrt(3+2sqrt2)=\sqrt((sqrt2)^2+2.sqrt2 .1+1^2)=\sqrt((sqrt2+1)^2)=|sqrt2+1|=sqrt2+1`

`b,\sqrt(7+4sqrt3)=\sqrt((sqrt3)^2+2.\sqrt3 .2 +2^2)=\sqrt((sqrt3+2)^2)=|sqrt3+2|=sqrt3+2`

`c,sqrt(14-6sqrt5)=\sqrt((sqrt5)^2-2.\sqrt5 .3+3^2)=sqrt((sqrt5-3)^2)=|sqrt5-3|+3-sqrt5`

a: Ta có: \(A=\left(\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right):\left(2+\sqrt{2}\right)\)

\(=\left(2+\sqrt{2}\right):\left(2+\sqrt{2}\right)\)

=1

b: Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+1\)

=1

31 tháng 10 2021

\(a,=\sqrt{17}-4-\sqrt{17}-2=-6\\ b,=7\left(\sqrt{3}+\sqrt{2}\right)-7\sqrt{3}-6\sqrt{2}\\ =7\sqrt{3}+7\sqrt{2}-7\sqrt{3}-6\sqrt{2}=\sqrt{2}\\ c,=\dfrac{6\sqrt{5}+12-6\sqrt{5}+12}{3}+2\sqrt{2}-\dfrac{4\sqrt{7}}{7}\\ =8+2\sqrt{2}-\dfrac{4\sqrt{7}}{7}=\dfrac{56+14\sqrt{2}-4\sqrt{7}}{7}\\ d,=\left(\dfrac{\sqrt{2}}{4}-\dfrac{6\sqrt{2}}{4}+8\sqrt{2}\right):\dfrac{1}{8}=\dfrac{-5\sqrt{2}+32\sqrt{2}}{4}\cdot8=54\sqrt{2}\)

a: Ta có: \(\sqrt{4+\sqrt{15}}\)

\(=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}+\sqrt{6}}{2}\)

b: Ta có: \(\left(3-\sqrt{2}\right)\cdot\sqrt{11+6\sqrt{2}}\)

\(=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\)

=9-2

=7

c: Ta có: \(\left(\sqrt{7}+\sqrt{5}\right)\cdot\sqrt{12-2\sqrt{35}}\)

\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=2

12 tháng 10 2021

c: Ta có: \(C=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

\(=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\sqrt{10}\)

24 tháng 8 2021

a)\(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)

\(=2.\sqrt{\dfrac{4^2}{3}}-3.\sqrt{\dfrac{1}{3.3^2}}-6\sqrt{\dfrac{2^2}{3.5^2}}\)

\(=2.\dfrac{4}{\sqrt{3}}-3.\dfrac{1}{3\sqrt{3}}-6.\dfrac{2}{5\sqrt{3}}=\dfrac{8}{\sqrt{3}}-\dfrac{1}{\sqrt{3}}-\dfrac{12}{5\sqrt{3}}\)\(=\dfrac{23}{5\sqrt{3}}=\dfrac{23\sqrt{3}}{15}\)

b)\(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)

\(=6\sqrt{\dfrac{8}{9}.\dfrac{1}{2}}-5\sqrt{\dfrac{32}{25}.\dfrac{1}{2}}+14\sqrt{\dfrac{18}{49}.\dfrac{1}{2}}\)

\(=6\sqrt{\dfrac{4}{9}}-5\sqrt{\dfrac{16}{25}}+14\sqrt{\dfrac{9}{49}}\)\(=6.\dfrac{2}{3}-5.\dfrac{4}{5}+14.\dfrac{3}{7}=6\)

c)\(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}=\left|\sqrt{2}-2\right|-\sqrt{4+2.2\sqrt{2}+2}=2-\sqrt{2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(=2-\sqrt{2}-\left(2+\sqrt{2}\right)=-2\sqrt{2}\)