K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

nâng cao phát triển toán 7 đấy 

mấy bài đấu thì phải

4 tháng 3 2018

Đặt: \(L=\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}\)

\(L=1+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)

\(L=\frac{2012}{2012}+\frac{2012}{2}+\frac{2012}{3}+..+\frac{2012}{2011}\)

\(L=2012\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2011}+\frac{1}{2012}\right)\)

Hay: \(P=\frac{1}{2012}\)

17 tháng 10 2018

\(B=\frac{2001}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{2}{2010}+\frac{1}{2001}\)

\(B=\left(2011-1-...-1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)

\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}\)

\(B=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\Rightarrow\)\(\frac{B}{A}=\frac{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}=2012\)

Vậy \(\frac{B}{A}=2012\)

Chúc bạn học tốt ~ 

17 tháng 10 2018

cảm ơn bạn

9 tháng 8 2017

Ta có :

\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{1+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....+\left(\frac{1}{2011}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+....+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}\right)}\)

\(\frac{1}{2012}\)

24 tháng 9 2016

Mẫu số của A \(=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\)

\(=\left(1+1+...+1\right)+\left(\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\right)\)

      (2012 số 1)                 (2011 phân số)

\(=\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)

\(=\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)

\(=2013.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)

=> \(A=\frac{1}{2013}\)

24 tháng 9 2016

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)

\(\Rightarrow A=\frac{1}{2013}\)

Vậy \(A=\frac{1}{2013}\)

19 tháng 6 2019

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{1}+\frac{2012}{2}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}\)

\(=\frac{1}{2012}\)

19 tháng 6 2019

\(B=\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+....+\frac{1}{2011}\)

\(=\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....\left(\frac{1}{2011}+1\right)+1\)

\(=\frac{2012}{2}+\frac{2012}{3}+\frac{2012}{4}+.....+\frac{2012}{2011}+\frac{2012}{2012}\)

\(=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2012}\right)\)

Thay vào,rút gọn là ra

10 tháng 11 2015

\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2012}+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2012}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}}\)

\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)}=\frac{1}{2012}\)

5 tháng 11 2015

Có B = \(\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+....+\frac{1}{2011}\)

B = \(\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....+\left(\frac{1}{2011}+1\right)+1\)

B = \(\frac{2012}{2}+\frac{2012}{3}+....+\frac{2012}{2011}+\frac{2012}{2012}\)

B = \(2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\)

=> \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)}=\frac{1}{2012}\)