Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. sai dấu nhé
2.a, \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(5^2.3\right)^{15}}=\frac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
b, \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(\frac{4}{5}\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\cdot2\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\right)^5\cdot2^5}{\left(\frac{2}{5}\right)^5\cdot\frac{2}{5}}=2^5\div\frac{2}{5}=32\cdot\frac{5}{2}=80\)
c, \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{2^{15}}=3^2=9\)
\(\frac{120^3}{40^3}\)= (120:40)3 = 33 = 27
\(\frac{390^4}{130^4}\)=(390 : 130)4=34 = 81
\(\frac{3^2}{\left(0,375\right)^2}\)= (3:0,375)2 = 82 =64
Giải:
a) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{40}\right)^3=30^3=2700\)
b) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=30^4=810000\)
c) \(\dfrac{3^2}{\left(0,375\right)^2}=\left(\dfrac{3}{0,375}\right)^2=8^2=64\)
Đáp số: a) 2700; b) 810000; c) 64.
Chúc bạn học tốt!!!
a) $\dfrac{120^3}{40^3}=(\dfrac{120}{40})^3=3^3=27$
b) $\dfrac{390^4}{130^4}=(\dfrac{390}{130})^4=3^4=81$
c) $\dfrac{3^2}{(0,375)^2}=(3:0,375)^2=(3:\dfrac{3}{8})^2=8^2=64$
a: \(\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}:\dfrac{13+\dfrac{13}{2}+\dfrac{13}{3}+\dfrac{13}{4}}{17-\dfrac{17}{2}+\dfrac{17}{3}-\dfrac{17}{4}}\)
\(=\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}\cdot\dfrac{17\left(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{13\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)}=\dfrac{17}{13}\)
b: \(\dfrac{0.125-\dfrac{1}{5}+\dfrac{1}{7}}{0.375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0.2}{\dfrac{3}{4}+0.5-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{3}{10}}\)
\(=\dfrac{1}{3}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)}=\dfrac{1}{3}+\dfrac{2}{3}=1\)
a) \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{47}\right)^6=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^{21-12}=\left(\frac{3}{7}\right)^9\)
b) \(\frac{390}{130}^4=3^4=81\)
c) \(\left(0,125\right)^3.512=\frac{1}{512}.512=1\)
a)\(\frac{20^3}{40^3}=\frac{1^3}{2^3}=\frac{1}{8}\)
b) \(\frac{390^4}{130^4}=\frac{3^4}{1^4}=\frac{81}{1}=81\)
c) \(\frac{3^2}{0,375^2}=\frac{8^2}{1^2}=\frac{64}{1}=64\)