Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A = 1.4 + 2.5 + 3.6 + ...+ 99.102\)
\(A=1.2+1.2+2.3+2.2+3.4+3.2+...+99.100+99.2\)
\(A=(1.2+2.3+3.4+...+99.100)+2.(1+2+3+...+99)\)
\(A=333300+9900\)
\(A=343200\)
\(B = 2.4 + 4.6 + 6.8 + ....+ 98.100 + 100.102\)
\(B=(1.2)(2.2)+(2.2)(3.2)+...+(50.2)(51.2) \)
\(B=4(1.2+2.3+...+50.51) \)
\(M= 1.2+2.3+...+50.51 \)
\(3M=1.2.3+2.3.(4-1)+...+50.51.(52-49) \)
\(=1.2.3+2.3.4-1.2.3+...+50.51.52-49.50.51 \)
\(= 50.51.52\)
\(=132600 \)
\(\Rightarrow\)\(M=44200 \)
\(\Rightarrow\) \(B=4M=176800\)
Đặt \(A=\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{96\cdot99}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{96}-\frac{1}{99}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{99}\)
\(\Rightarrow A=\frac{32}{99}\)
\(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{96.99}\)
\(=\frac{3}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{96}-\frac{1}{99}\right)\)
\(=1.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=1.\frac{32}{99}\)
\(=\frac{32}{99}\)
a)
\(\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20}\)
\(=\frac{1\cdot2\cdot\left(1+2\cdot2+3\cdot3+4\cdot4+5\cdot5\right)}{3\cdot4\cdot\left(1+2\cdot2+3\cdot3+4\cdot4+5\cdot5\right)}\)
\(=\frac{1\cdot2}{3\cdot4}=\frac{1}{6}\)
b) \(\frac{12\cdot13+24\cdot26+36\cdot39}{24\cdot26+48\cdot52+72\cdot78}\)
\(=\frac{12\cdot13\cdot\left(1+2\cdot2+3\cdot3\right)}{24\cdot26\cdot\left(1+2\cdot2+3\cdot3\right)}\)
\(=\frac{12\cdot13}{24\cdot26}=\frac{1}{4}\)
\(\frac{2\cdot3+4\cdot6+14\cdot21}{3\cdot5+6\cdot10+21\cdot35}=\frac{2\cdot3\cdot\left(1+2\cdot2+7\cdot7\right)}{3\cdot5\cdot\left(1+2\cdot2+7\cdot7\right)}=\frac{2\cdot3}{3\cdot5}=\frac{2}{5}\)
\(B=2.4+4.6+6.8+...+98.100\)
\(B=2.\left(1.2\right)+2.\left(2.3\right)+2.\left(3.4\right)+...+2.\left(49.50\right)\)
\(B=2\left(1.2+2.3+3.4+....+49.50\right)\)
Đặt:
\(A=1.2+2.3+3.4+...+49.50\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)
\(3A=49.50.51\)
\(A=\dfrac{49.50.51}{3}=41650\)
\(B=2A=41650.2=83300\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)=\dfrac{1}{2}\cdot\dfrac{4}{10}=\dfrac{2}{10}=\dfrac{1}{5}\)
gọi tổng của 1+2+3+4+...+79 là M
2+3+4+...+80 là N
ta có A = M.N
từ 1 đến 79 hay từ 2 đến 80 có (79-1) chia 1 + 1=79
M = (79+1).79 chia 2= 3160
N = (80+2).79chia 2= 3239
A = 3160 .3239 = 10235240
\(M=\dfrac{3}{2.4}+\dfrac{3}{4.6}+\dfrac{3}{6.8}+.....+\dfrac{3}{100.102}\)
\(M=\dfrac{3.2}{2.4}+\dfrac{3.2}{4.6}+\dfrac{3.2}{6.8}+.....+\dfrac{3.2}{100.102}\)
\(M=3.(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+......+\dfrac{2}{100.102})\)
\(M=3.(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+.....+\dfrac{1}{100}-\dfrac{1}{102})\)
\(M=3.(\dfrac{1}{2}-\dfrac{1}{102})\)
\(M=3.\dfrac{50}{102}\)
\(M=\dfrac{25}{17}\)
Nếu ai mong bn thông cảm!!! Chúc bn hc tốt!
Ta có:
A=4/2(2/2.4+2/4.6+...+2/2014.2016)
A=4/2(1/2-1/4+1/4-1/6+...+1/2014-1/2016)
A=4/2(1/2-1/2016)
A=4/2.1007/2016
=>A=1007/1008
\(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2014.2016}\)
\(A=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(A=2.\frac{1007}{2016}\)
\(A=\frac{1007}{1008}\)
a,6B=2.4.6+4.6.(8-2)+...............+98.100.(102-96)
6B=2.4.6+4.6.8-2.4.6+..............+98.100.102-96.98.100
6B=98.100.102
B=98.100.102:6
B=166600