Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
62.64 - 43 (36 - 1)
= (3.2)2 . (3.2)4 - (22)3 (36 - 1)
= 32. 22 . 34. 24 - 26 (36 - 1)
= 26. 36 - 26 (36 - 1)
= 26. (36 - 36 +1 )
= 26 . 1 = 26 = 64
a:
=\(18x^{2n-3}+3x^n-18^{2n-3}+2x^n\)
\(=5x^n\)
b: \(=5^n\cdot5-4\cdot5^n=5^n\)
c: \(=6^6-4^3\cdot3^6+4^3\)
\(=2^6\cdot3^6-2^6\cdot3^6+64=64\)
a)5n+1-4.5n
=5.5...5(n chữ số 5).5-4.5n
=5n(5-4)
=5n.1
=5n
b)62.64-43(36-1)
=66-43x36+43
=66-(22)3x36+43
=66-26.36+43
=66-66+43
=43
\(\text{6^2.6^4-4^3.[3^6-1] }\)
\(=6^6-4^3.3^6-4^3\)
\(=6^6-2^{2.3}.3^6-4^3\)
\(=6^6-6^6-4^3\)
\(=-4^3\)
\(=-64\)
1) Ta có: \(\left(3-x^2\right)+6-2x=0\)
\(\Leftrightarrow3-x^2+6-2x=0\)
\(\Leftrightarrow-x^2-2x+9=0\)
\(\Leftrightarrow x^2+2x-9=0\)
\(\Leftrightarrow x^2+2x+1=10\)
\(\Leftrightarrow\left(x+1\right)^2=10\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{10}\\x+1=-\sqrt{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{10}-1\\x=-\sqrt{10}-1\end{matrix}\right.\)
Vậy: \(S=\left\{\sqrt{10}-1;-\sqrt{10}-1\right\}\)
2) Ta có: \(5\left(2x-1\right)+7=4\left(2-x\right)+2\)
\(\Leftrightarrow10x-5+7=8-4x+2\)
\(\Leftrightarrow10x+4x=8+2+5-7\)
\(\Leftrightarrow14x=8\)
\(\Leftrightarrow x=\dfrac{4}{7}\)
Vậy: \(S=\left\{\dfrac{4}{7}\right\}\)
4, \(\Leftrightarrow4x+4+9\left(2x+1\right)=4x+6\left(x+1\right)+7+12x\)
\(\Leftrightarrow22x+13=22x+13\)vậy pt có vô số nghiệm
5, \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\Rightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow8x=25\Leftrightarrow x=\dfrac{25}{8}\)
6, \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\Rightarrow6x-6+3x-3=12-8\left(x-1\right)\)
\(\Leftrightarrow9x-9=20-8x\Leftrightarrow17x=29\Leftrightarrow x=\dfrac{29}{17}\)
Xét số hạng tổng quát:
\(k^4+\frac{1}{4}=\left(k^4+2\cdot\frac{1}{2}\cdot k^2+\frac{1}{4}\right)-k^2\)=\(\left(k^2+\frac{1}{2}\right)^2-k^2\)
= \(\left(k^2+\frac{1}{2}-k\right)\left(k^2+\frac{1}{2}+k\right)\)
Thay k từ 1 đến 12 ta được:
A=\(\frac{\frac{1}{2}\cdot\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(110+\frac{1}{2}\right)\left(132+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)...\left(132+\frac{1}{2}\right)\left(152+\frac{1}{2}\right)}\)=\(\frac{\frac{1}{2}}{152+\frac{1}{2}}=\frac{1}{305}\)
\(6^2.6^4-4^3\left(3^6-1\right)\)
\(=6^6-64\left(729-1\right)\)
\(=46656-64.728\)
\(=46656-46592\)
\(=64\)
Cho tập hợp A gồm các số tự nhiên có 4 chữ số mà tổng các chữ số bằng 4.
Vậy tập hợp A có: phần tử