Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(40^2-31^2\right)-\left(39^2-32^2\right)+\left(38^2-33^2\right)-\left(37^2-34^2\right)+\left(36^2-35^2\right)\)
\(=\left(40-31\right)\left(40+31\right)-\left(39-32\right)\left(39+32\right)+\left(38-33\right)\left(38+33\right)-\)
\(\left(37-34\right)\left(37+34\right)+\left(36-35\right)\left(36+35\right)\)
\(=9.71-7.71+5.71-3.71+1.71\)
\(=\left(9-7+5-3+1\right).71=5.71=355\)
\(40^2-39^2+38^2-37^2+....+32^2-31^2\)
\(=\left(40-39\right)\left(40+39\right)+\left(38-37\right)\left(38+37\right)+...+\left(32-31\right)\left(32+31\right)\)
\(=40+39+38+37+....+32+31\)
Số số hạng của dãy trên là: (40-31):1+1= 10 (số)
Tổng trên là: (40+31) x 10 : 2 = 355
Vậy ....
132^2 - 112^2 = (132 - 112) (132 + 112) = 20 . 244 = 4880
39 . 41 = (40 - 1) (40 + 1) = 402 - 1 = 1599
402 - 392 + 382 - 372 + ... + 22 - 1 = (402 - 392) + (382 - 372) + ... + (22 - 1)
= (40 - 39) (40 + 39) + (38 - 37) (38 + 37) + ... + (2 - 1) (2 + 1)
= 40 + 39 + 38 + 37 + 36 + ... + 2 + 1
= \(\frac{\left(40-1+1\right)\left(40+1\right)}{2}=\frac{40.41}{2}=820\)
đặt biểu thức \(\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\) là A
Ta có:\(A=\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\)
\(\Rightarrow15.A=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\)
\(\Rightarrow15.A=\left(4^4-1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\)
\(\Rightarrow15.A=\left(4^8-1\right)\left(4^8+1\right)\left(4^{16}+1\right)\)
\(\Rightarrow15.A=\left(4^{16}-1\right)\left(4^{16}+1\right)\)
\(\Rightarrow15.A=4^{32}-1\)
\(\Rightarrow A=\dfrac{4^{32}-1}{15}\)
Vậy giá trị biểu thức trên là \(\dfrac{4^{32}-1}{15}\)
\(b,40^2-39^2+38^2-37^2+...+2^2-1^2\)
\(=\left(40^2-39^2\right)+\left(38^2-37^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(40-39\right)\left(40+39\right)+\left(38-37\right)\left(38+37\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=1+2+...+38+39+40\)
\(=\dfrac{\left(40+1\right).40}{2}=\dfrac{41.40}{2}=820\)
\(40^2-39^2+38^2-37^2+..........+2^2-1^2\)
\(=\left(40^2-39^2\right)+\left(38^2-37^2\right)+..........+\left(2^2-1^2\right)\)
\(=\left(40-39\right)\left(40+39\right)+\left(38-37\right)\left(38+37\right)+...........+\left(2-1\right)\left(2+1\right)\)
\(=40^2+39^2+38^2+37^2+.........+2^2+1^2\)
\(=\dfrac{40.41}{2}=820\)
\(40^2-39^2+38^2-37 ^2+...+2^2-1^2\)
= \(\left(40+39\right)\left(40-39\right)+\left(38+37\right)\left(38-37\right)+....+\left(2+1\right)\left(2-1\right)\)
= \(79.1+75.1+....+3.1\)
= \(79+75+....+3\)
= \(\left(79+3\right)\left[\left(79-3\right):4+1\right]:2\)
= \(82.20:2\)
= \(820\)
\(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
=> \(9x^2-6x+1+2x^2+12x+18-11x^2+11=6\)
=> \(6x+30=6\)
=> \(6x=6-30\)
=> \(6x=-24\)
=> \(x=-24:6=-4\)
\(\text{a) }40^2-39^2+38^2-37^2+...+2^2-1^2\)
\(=\left(40^2-39^2\right)+\left(38^2-37^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(40-39\right)\left(40+39\right)+\left(38-37\right)\left(38+37\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=1.79+1.75+...+1.3\)
\(=79+75+...+3\)
\(\text{Từ 3 đến 79 có: (79 - 3) : 2 + 1 = 39 (số hạng)}\)
\(\text{Tổng là: }\frac{\left(79+3\right)\times39}{2}=1599\)
\(\text{b) }\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
\(\Leftrightarrow\left(9x^2-6x+1\right)+2\left(x^2+6x+9\right)+11\left(1-x^2\right)=6\)
\(\Leftrightarrow9x^2-6x+1+2x^2+12x+18+11-11x^2=6\)
\(\Leftrightarrow\left(9x^2+2x^2-11x^2\right)+\left(-6x+12x\right)+\left(1+18+11\right)=6\)
\(\Leftrightarrow6x+30=6\)
\(\Leftrightarrow6x=6-30\)
\(\Leftrightarrow6x=-24\)
\(\Leftrightarrow x=-4\)
Đề: Tính???
20122 - 20112 + 20102 - 20092 + ... + 22 - 12
= (2012 + 2011) (2012 - 2011) + (2010 + 2009) (2010 - 2009) + ... + (2 + 1) (2 - 1)
= 2012 + 2011 + 2010 + 2009 + ... + 2 + 1
Số số hạng là: (2012 - 1) : 1 + 1 = 2012 (số)
Tổng bằng: (1 + 2012) . 2012 : 2 = 2025078
Vậy 20122 - 20112 + 20102 - 20092 + ... + 22 - 12 = 2025078.
tìm 2 số lẻ liên tiếp biết hiệu b của phương của chúng bằng 56
hsdllhvbweiuuuuuuuuuuuuuuuuuuuuuuuuuu