Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3.1}}-\sqrt{3+1-2\sqrt{3.1}}\)
\(=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}=|\sqrt{3}+1|-|\sqrt{3}-1|=2\)
\(B=\sqrt{4+5-2\sqrt{4.5}}+\sqrt{4+5+2\sqrt{4.5}}=\sqrt{(\sqrt{4}-\sqrt{5})^2}+\sqrt{(\sqrt{4}+\sqrt{5})^2}\)
\(=|\sqrt{4}-\sqrt{5}|+|\sqrt{4}+\sqrt{5}|=2\sqrt{5}\)
\(C\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7+1-2\sqrt{7.1}}-\sqrt{7+1+2\sqrt{7.1}}\)
\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}\)
\(=|\sqrt{7}-1|-|\sqrt{7}+1|=-2\Rightarrow C=-\sqrt{2}\)
----------------------------
\(7+4\sqrt{3}=(2+\sqrt{3})^2\Rightarrow 10\sqrt{7+4\sqrt{3}}=10(2+\sqrt{3})\)
\(\Rightarrow \sqrt{48-10\sqrt{7+4\sqrt{3}}}=\sqrt{28-10\sqrt{3}}=\sqrt{(5-\sqrt{3})^2}=5-\sqrt{3}\)
\(\Rightarrow 3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}=3+5(5-\sqrt{3})=28-5\sqrt{3}\)
\(\Rightarrow D=\sqrt{5\sqrt{28-5\sqrt{3}}}\)
a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))
\(=5-3-\sqrt{5}\)
\(=2-\sqrt{5}\)
b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)
\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)
\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)
\(=2\sqrt{3}+\sqrt{6}\)
c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)
\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)
\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)
\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)
\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))
\(=\sqrt{3}+\frac{8}{3}\)
d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)
\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)
\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)
\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))
\(=6-3\sqrt{3}\)
a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)
hay \(B=2\sqrt{10}\)
d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
hay \(D=\sqrt{2}\)
e) \(E=A-\sqrt{2}\)
\(A=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(A^2=8-2\sqrt{16-7}=8-6=2\)
\(A>0=>A=\sqrt{2}\)
\(E=A-\sqrt{2}=0\)
a)\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
=\(\left(6\sqrt{10}+6\sqrt{2}-10\sqrt{2}-2\sqrt{10}\right)\sqrt{3+\sqrt{5}}\)
=\(\left(4\sqrt{10}-4\sqrt{2}\right)\sqrt{3+\sqrt{5}}=\left(4\sqrt{10}-4\sqrt{2}\right)\dfrac{\sqrt{5}+1}{2}\)
=\(\dfrac{20\sqrt{2}+4\sqrt{10}-4\sqrt{10}-4\sqrt{2}}{2}\)
=\(\dfrac{16\sqrt{2}}{2}=8\sqrt{2}\)
b)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
=\(\dfrac{\sqrt{5}+1-\sqrt{5}+1-2}{\sqrt{2}}=0\)
c)\(\sqrt{3,5-\sqrt{6}}+\sqrt{3,5+\sqrt{6}}\)
=\(\dfrac{\sqrt{6}-1+\sqrt{6}+1}{\sqrt{2}}=2\sqrt{3}\)
d)\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)
=\(\dfrac{\sqrt{7}-1-\sqrt{7}-1+\sqrt{14}}{\sqrt{2}}=\sqrt{7}-1\)
e)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
=\(\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}=0\)
a/ \(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)
Mấy câu kia bấm máy tính là xong hết
B2:
a/ \(=\sqrt{-\left(x^2+5\right)}\)
Có \(x^2+5>0\forall x\Rightarrow-\left(x^2+5\right)< 0\forall x\)
Vậy biểu thức luôn ko đc xđ
b/ x-4\(\ge0\) \(\Rightarrow x\ge4\)
c/ Có -3<0
Để căn thức xđ\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\)
d/ Có -(x2+1)<0\(\forall\) x
Để căn thức có nghĩa \(\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
3: \(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
4: \(=\dfrac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\sqrt{2}\)
5: \(=\dfrac{\sqrt{23-8\sqrt{7}}}{3}+\dfrac{\sqrt{23+8\sqrt{7}}}{3}\)
\(=\dfrac{4-\sqrt{7}+4+\sqrt{7}}{3}=\dfrac{8}{3}\)