Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
=>\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
=>\(A=2A-A=2+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
\(A=2+\frac{1}{2^{98}}\)
Vậy: \(A=2+\frac{1}{2^{98}}\)
Gọi \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2B=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2B-B=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow B=2-\frac{1}{2^{100}}\)
\(\Rightarrow A=2\)
Vậy A = 2
S=1+2+...+99+100
tổng trên có số số hạng là:
\(\frac{\left(100-1\right)}{1}+1=100\)(số hạng)
tổng trên có kết quả là:
\(\frac{\left(1+100\right)\times100}{2}=5050\)
Đ/S:...
S=1+3+5+...+2013+2015+2017
tổng trên có số số hạng là:
\(\frac{\left(2017-1\right)}{2}+1=1009\)(số hạng)
tổng trên có kết quả là:
\(\frac{\left(1+2017\right)\times1009}{2}=1018081\)
Đ/S:...
S=2+4+6+...+2016
tổng trên có số số hạng là:
\(\frac{\left(2016-2\right)}{2}+1=1008\)(số hạng)
tổng trên có kết quả là:
\(\frac{\left(2+2016\right)\times1008}{2}=1017072\)
Đ/S:...
k mk nha
Số số hạng là :
(100 - 1) + 1 = 100 (số)
Tổng là :
(100 + 1) x 100 : 2 = 5050
Toán lớp 6 Phân sốToán chứng minh
Nguyễn Triệu Yến Nhi 07/05/2015 lúc 16:44
a)
A=(a3+a2)+(a2−1)(a3+a2)+(a2+a)+(a+1) =a2(a+1)+(a+1)(a+1)a2(a+1)+a(a+1)+(a+1) =(a+1)(a2+a−1)(a+1)(a2+a+1) =a2+a−1a2+a−1
b) gọi d = ƯCLN (a2 + a - 1; a2 + a +1 )
=> a2 + a - 1 chia hết cho d
a2 + a +1 chia hết cho d
=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d => 2 chia hết cho d
=> d = 1 hoặc d = 2
Nhận xét: a2 + a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2
=> a(a+1) - 1 lẻ => a2 + a - 1 lẻ
=> d không thể = 2
Vậy d = 1 => đpcm
Gọi tử số của \(S\)là :\(A=1+2+2^2+2^3+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+...2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)
\(A=1-2^{2016}\)
\(\Rightarrow S=\frac{1-2^{2016}}{1-2^{2016}}=1\)