Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5/6 + 11/12 + 19/20 + ... + 89/90
= 1 - 1/6 + 1 - 1/12 + 1 - 1/20 + ... + 1-1/90
= [1+1+1+1...+1] - [1/2*3 + 1/3*4 + 1/4*5 + ... +1/9*10]
= 8 - [1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10]
= 8 - [1/2 - 1/10]
= 8 - 2/5
= 38/5
S=1-1/6+1-1/12+...+1-1/90
=8-(1/2.3+1/3.4+...+1/9.10)
=8-(1/2-1/3+1/3-1/4+...+1/9-1/10)
=8-(1/2-1/10)
=8-2/5
=38/5
\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{38}{5}\)
Bạn ra câu đố mik xin trả lời như sau :
Ta có : A = \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
A có số các phân số là :
( 89 - 5 ) : 1 + 1 = 85 ( p/số )
Ta có : A = \(\left(1-\frac{5}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+...+\left(1-\frac{1}{90}\right)\)
A = \(\left(1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
A = \(\left(1.85\right)-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)( Có 85 số 1 vì mỗi số 1 đi kèm với 1 phân số mà có 85 phân số)
A = \(85-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
A = \(85-\left(\frac{1}{2}-\frac{1}{10}\right)\)
A = \(85-\frac{2}{5}\)
A = 85 - 0.4
A = 84,6
Ủng hộ mik nhé ^_^"
A = (1 -1/2) + (1 - 1/6) + (1 - 1/12) + (1 - 1/20 ) + ...+ (1 - 1/ 90)
= (1+1+1+1+1+1+1+1+1) - ( 1/2 - 1/6 - 1/12 - 1/ 20 - ...- 1/90)\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)\(=9-\left(1-\frac{1}{10}\right)=\frac{81}{10}\)
Ở đây bạn thiếu phân số 29/30 rồi, mk thêm vào nhé
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(=\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{5}{6}+\frac{1}{6}\right)+\left(\frac{11}{12}+\frac{1}{12}\right)+...+\left(\frac{89}{90}+\frac{1}{90}\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)
\(=1+1+1+...+1-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{89}-\frac{1}{90}\right)\)
( 9 số 1 )
\(=9-\left(\frac{1}{1}-\frac{1}{90}\right)=9-\frac{89}{90}=8\frac{1}{90}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{89}{90}\)
= \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{90}\right)\)
= \(\left(1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)8 số hạng 1
= \(\left(1.8\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\)
= \(8-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
= \(8-\left(1-\frac{1}{10}\right)\)
= \(8-\frac{9}{10}\)
= \(\frac{71}{10}\)
= 1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
= 1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
= 9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
= 9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)]
= 9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
= 9 – (1 – 1/10) = 9 – 9/10 = 81/10
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{89}{90}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{90}\right)\)
\(=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+\left(1-\frac{1}{3.4}\right)+...+\left(1-\frac{1}{9.10}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
9 số 1
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}\)
\(=\frac{81}{10}\)
Ủng hộ mk nha ^-^
a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)
\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=8-\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+\frac{10-9}{9.10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)=7,6\)
b) Bạn làm tương tự.
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
= \(8\frac{1}{10}\)
đề wá dài, mk chỉ làm bằng kết quả thổi
đúng thì cho 1 k nha thấy sai thì khỏi cần
\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+....+\frac{89}{90}\)
\(S=\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+....+\left(1-\frac{1}{90}\right)\)
\(S=\left(1-\frac{1}{2.3}\right)+\left(1-\frac{1}{3.4}\right)+\left(1-\frac{1}{4.5}\right)+....+\left(1-\frac{1}{9.10}\right)\)
\(S=\left(1+1+1+....+1\right)-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(S=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(S=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(S=8-\frac{2}{5}=\frac{38}{5}\)